Although NMR spectroscopic techniques coupled with multivariate statistics can yield much useful information for classifying biological samples based on metabolic profiles, biomarker identification remains a time-consuming and complex procedure involving separation methods, two-dimensional NMR, and other spectroscopic tools. We present a new approach to aid complex biomixture analysis that combines diffusion ordered (DO) NMR spectroscopy with statistical total correlation spectroscopy (STOCSY) and demonstrate its application in the characterization of urinary biomarkers and enhanced information recovery from plasma NMR spectra. This method relies on calculation and display of the covariance of signal intensities from the various nuclei on the same molecule across a series of spectra collected under different pulsed field gradient conditions that differentially attenuate the signal intensities according to translational molecular diffusion rates. We term this statistical diffusion-ordered spectroscopy (S-DOSY). We also have developed a new visualization tool in which the apparent diffusion coefficients from DO spectra are projected onto a 1D NMR spectrum (diffusion-ordered projection spectroscopy, DOPY). Both methods either alone or in combination have the potential for general applications to any complex mixture analysis where the sample contains compounds with a range of diffusion coefficients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0703754DOI Listing

Publication Analysis

Top Keywords

nmr spectra
8
biological samples
8
nmr spectroscopic
8
signal intensities
8
diffusion coefficients
8
nmr
6
statistical correlation
4
correlation projection
4
projection methods
4
methods improved
4

Similar Publications

This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.

View Article and Find Full Text PDF

The synthetic availability and wide range of biological activity of hydrazides and hydrazones make them attractive subjects for investigation. In this study, we focused on synthesis of 2-methyl-5-nitro-6-phenylnicotinohydrazide-based hydrazones derived from the corresponding substituted aldehydes. The structure of the obtained compounds was studied using NMR spectroscopy and DFT calculations.

View Article and Find Full Text PDF

The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts.

Molecules

December 2024

Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland.

Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances.

View Article and Find Full Text PDF

Coumarin compounds have heterocyclic core with different properties such as high quantum yields, broad Stokes shifts, and superior photophysical and biological activity. It is known that fluorescence properties increase with increased intramolecular charge transfer in systems where electron-withdrawing or donor groups are attached to different positions of the coumarin compound. When these compounds interact with analytes in the environment, the analytes in the environment can be detected by quenching or increasing fluorescence.

View Article and Find Full Text PDF

A total chemical synthesis of spacer-armed Forssman pentasaccharide is reported. The choice of the 2(donor) + 3(acceptor) block scheme, the optimal combination of a limited number of simple protecting groups and the sequence of deprotection steps allowed to achieve the high yield and stereoselectivity of glycosylation and to avoid losses during deprotection. The target pentasaccharide was obtained in a 10-mg scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!