Structure and mechanism of spermidine synthases.

Biochemistry

Structural Genomics Consortium, University of Toronto, 100 College Street, Toronto, Ontario, M5G 1L5, Canada.

Published: July 2007

Aminopropyltransferases transfer aminopropyl groups from decarboxylated S-adenosylmethionine to amine acceptors, forming polyamines. Structural and biochemical studies have been carried out with the human spermidine synthase, which is highly specific for putrescine as the amine acceptor, and the Thermotoga maritima spermidine synthase, which prefers putrescine but is more tolerant of other substrates. Comparison of the structures of the human spermidine synthase with both substrates and products with the known structure of T. maritima spermidine synthase complexed to a multisubstrate analogue inhibitor and analysis of the properties of site-directed mutants provide a general mechanistic hypothesis for the aminopropyl transfer reaction. The studies also provide a structural basis for the specificity of the spermidine synthase subclass of the aminopropyltransferase family.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi602498kDOI Listing

Publication Analysis

Top Keywords

spermidine synthase
20
human spermidine
8
maritima spermidine
8
spermidine
6
synthase
5
structure mechanism
4
mechanism spermidine
4
spermidine synthases
4
synthases aminopropyltransferases
4
aminopropyltransferases transfer
4

Similar Publications

Efficient Spermidine Production Using a Multi-Enzyme Cascade System Utilizing Methionine Adenosyltransferase from Lactobacillus fermentum with Reduced Product Inhibition and Acidic pH Preference.

J Biotechnol

January 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Health Sciences, Fuyao University of Science & Technology, Fuzhou, Fujian Province, China. Electronic address:

Methionine adenosyltransferases (MATs; EC 2.5.1.

View Article and Find Full Text PDF

Purpose: Understanding the molecular mechanisms of adaptive regulation in the tumor microenvironment is crucial for precision therapy in hepatocellular carcinoma (HCC). We hypothesized that cargo proteins carried by extracellular vesicles (EVs) released in a hypoxic microenvironment might promote HCC progression by remodeling tumor-associated macrophages (TAMs).

Methods: EV protein analysis by label-free proteomics mass spectrometry of HCC cell lines of different tumor grades was performed.

View Article and Find Full Text PDF

In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom .

In Silico Pharmacol

December 2024

Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.

Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.

View Article and Find Full Text PDF

Hypusination in intestinal epithelial cells protects mice from infectious colitis.

Gut Microbes

December 2024

Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Enteropathogenic (EPEC) is a bacterium that causes attaching/effacing (A/E) lesions and serious diarrheal disease, a major health issue in developing countries. EPEC pathogenicity results from the effect of virulence factors and dysregulation of host responses. Polyamines, including spermidine, play a major role in intestinal homeostasis.

View Article and Find Full Text PDF

The putative polyamine transporter Shp2 facilitates phosphate export in an Xpr1-independent manner and contributes to high phosphate tolerance.

J Biol Chem

December 2024

Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan; Institute of Integrative Neurobiology, Konan University, Kobe, Japan. Electronic address:

Phosphate (Pi) homeostasis at the cellular level is crucial, requiring coordinated Pi uptake, storage, and export. However, the regulatory mechanisms, particularly those governing Pi export, remain elusive, despite their relevance to human diseases like primary familial brain calcification. While Xpr1, conserved across eukaryotes, is the only known Pi exporter, the existence of additional Pi exporting factors is evident; however, these factors have been poorly characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!