Duplex polarons in DNA.

J Am Chem Soc

Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.

Published: July 2007

In earlier work we calculated the wavefunction and energy of the solvated polaron in DNA with a simple model in which the charge was taken to be on a single chain of bases at the center of the double helix. To better approximate the actual situation, we have now extended the calculations to the case in which the charge is distributed on two chains of bases, complementary to each other, one on each side of the center. The binding energy of the resulting polaron is somewhat larger than that obtained for the single-chain polaron, the result of each chain of the polaron being closer to some of the polarization charge it induces. Carrying out the calculations for a number of different sequences, we find that the polaron wavefunction is predominantly on one of the two chains, this usually being the one on which the charge was originally placed, despite the availability of lower energy sites on the other chain. This finding is in agreement with recent experiments of Schuster's group(Joy, A.; Ghosh, A. K.; Schuster, G. B. J. Am. Chem. Soc. 2006, 128, 5346-5347). Thus, in contradiction to the ideas of many researchers, there is no transport in which a hole zigzags from one chain to the other, as has been suggested for a sequence of guanines and cytosines (GCGCGC....), for example.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0691472DOI Listing

Publication Analysis

Top Keywords

polaron
5
duplex polarons
4
polarons dna
4
dna earlier
4
earlier work
4
work calculated
4
calculated wavefunction
4
wavefunction energy
4
energy solvated
4
solvated polaron
4

Similar Publications

TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.

View Article and Find Full Text PDF

Background/purpose: Peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor of energy metabolism-associated genes, and three PPARγ isoforms have been identified in periodontal tissues and cells. When energy metabolism homeostasis is affected by PPARγ downregulation in periodontal ligament fibroblasts (PDLFs), osteo/cementogenic abilities are markedly lost. Herein, we investigated whether PPARγ agonists promote periodontal tissue regeneration, and which PPARγ isoforms and metabolic pathways are indispensable for osteo/cementogenic abilities.

View Article and Find Full Text PDF

Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye.

Curr Top Dev Biol

January 2025

Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States. Electronic address:

All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.

View Article and Find Full Text PDF

Non-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!