Adult bone marrow consists of two different compartments, a vascular compartment of sinusoid and a hematopoietic compartment consisting of stromal cells and hematopoietic cells. In the hematopoietic compartment, stromal cells play an important role in the formation of the microenvironment for hematopoiesis. To clarify the relationship between hematopoietic cells and stromal cells, particularly reticular cells and macrophages, we examined the femur bone marrow of ICR mouse fetuses and neonates using F4/80 immunostaining and three-dimensional reconstruction under light and electron microscopy. In the fetal femurs, the marrow cavity formed early from 15 days of gestation, and it showed a marked increase in volume thereafter. On the basis of the appearance of hematopoietic cells, marrow development could be classified into two stages, a pre-hematopoietic stage from 15 days of gestation to two days of age, and a beginning stage of hematopoiesis thereafter. The pre-hematopoietic bone marrow contains not only stromal reticular cells but also macrophages, and both types of stromal cells were strongly positive to F4/80 monoclonal antibody. These F4/80-positive reticular cells had a triangular cell profile with long and slender cytoplasmic processes. Reticular cells often contained large lysosomes of not only dying neutrophils but also erythroblast nuclei. A few erythroblasts accumulated around the processes, and the number of erythroblasts around reticular cells increased with bone marrow development. On the other hand, macrophages were located either close to sinusoids or in sinusoid lumen, and a close relationship to hematopoietic cells was hardly noticeable. At the beginning stage of hematopoiesis, F4/80-positive reticular cells extended their long and slender cytoplasmic processes, and the number and length of the processes appeared markedly increased. The three-dimensional cell surface of the F4/80-positive reticular cells became very complex. Numerous erythroblasts accumulated around the processes, and erythroblastic islands could gradually be recognized after four days of age. In the erythroblastic islands, central reticular cells were F4/80-positive and contained numerous large phagosomes originating from the expelled nuclei of erythroblasts. Although macrophages contained large phagosomes, the relationship between macrophages and hematopoietic cells could not clearly be elucidated even at the beginning stage of hematopoiesis. At the onset of bone marrow hematopoiesis, the hematopoietic compartment contained two kinds of F4/80-positive phagocytes, i.e., reticular cells and macrophages. In marrow erythroblastic islands, not macrophages but F4/80-positive reticular cells were located at the center of each island.
Download full-text PDF |
Source |
---|
Cell Rep
January 2025
Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary. Electronic address:
Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta.
View Article and Find Full Text PDFbioRxiv
January 2025
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Neuronal subtypes derived from the embryonic hypothalamus and prethalamus regulate many essential physiological processes, yet the gene regulatory networks controlling their development remain poorly understood. Using single-cell RNA- and ATAC-sequencing, we analyzed mouse hypothalamic and prethalamic development from embryonic day 11 to postnatal day 8, profiling 660,000 cells in total. This identified key transcriptional and chromatin dynamics driving regionalization, neurogenesis, and differentiation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.
Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!