A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical behavior of the lamb growth plate in response to asymmetrical loading: a model for Blount disease. | LitMetric

Blount disease is a deformity of the knee as a result of abnormal mechanical forces known to influence the growth of the physis. Despite existing studies on mechanical forces on chondrocyte cultures or limited growth plate specimens, very little information characterizes the whole growth plate to asymmetrical loading. In this study, we evaluate the response of 5 ovine proximal tibial growth plates to asymmetrical mechanical loading. Fresh proximal tibia specimens were mounted, and compressive forces were applied via a servohydraulic test frame (MTS Systems Corporation, Minneapolis, Minn) machine at standardized locations while transducers recorded the displacement at different locations. With this method, we demonstrate that loading (cyclical or static) on 1 edge of the tibial surface results in compression through the physis under the site of pressure. In addition, we record statistically significant tensile displacement opposite the compressed side (P < 0.001); this effect diminished as loading cell moved central on the tibial surface. We further show that growth plate topography influences the amount of tension and compression observed. From this study, we conclude that asymmetrical loading (such as that observed in Blount disease) may lead to compression (which retards growth) but also develops tension on the convex side (which may be a mechanism to increase deformity via Depelch phenomenon). The relationship of physeal architecture (more undulations-less physeal strain) may explain why greater deformity is observed on the tibial side of the knee in adolescent Blount disease than on the femoral side.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BPO.0b013e318070cb9bDOI Listing

Publication Analysis

Top Keywords

growth plate
16
blount disease
16
asymmetrical loading
12
mechanical forces
8
tibial surface
8
growth
7
loading
6
mechanical
4
mechanical behavior
4
behavior lamb
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!