AI Article Synopsis

Article Abstract

Background And Aims: Forisomes are Ca(2+)-dependent contractile protein bodies that form reversible plugs in sieve tubes of faboid legumes. Previous work employed Vicia faba forisomes, a not entirely unproblematic experimental system. The aim of this study was to seek to establish a superior model to study these intriguing actuators.

Methods: Existing isolation procedures were modified to study the exceptionally large, tailed forisomes of Canavalia gladiata by differential interference contrast microscopy in vitro. To analyse contraction/expansion kinetics quantitatively, a geometric model was devised which enabled the computation of time-courses of derived parameters such as forisome volume from simple parameters readily determined on micrographs.

Key Results: Advantages of C. gladiata over previously utilized species include the enormous size of its forisomes (up to 55 microm long), the presence of tails which facilitate micromanipulation of individual forisomes, and the possibility of collecting material repeatedly from these fast-growing vines without sacrificing the plants. The main bodies of isolated Canavalia forisomes were box-shaped with square cross-sections and basically retained this shape in all stages of contraction. Ca(2+)-induced a 6-fold volume increase within about 10-15 s; the reverse reaction following Ca(2+)-depletion proceeded in a fraction of that time.

Conclusions: The sword bean C. gladiata provides a superior experimental system which will prove indispensable in physiological, biophysical, ultrastructural and molecular studies on the unique ATP-independent contractility of forisomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735297PMC
http://dx.doi.org/10.1093/aob/mcm080DOI Listing

Publication Analysis

Top Keywords

tailed forisomes
8
forisomes canavalia
8
canavalia gladiata
8
model study
8
experimental system
8
forisomes
7
gladiata
4
gladiata model
4
study
4
study ca2+-driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!