Magnetocardiography provides non-invasive three-dimensional electroanatomical imaging of cardiac electrophysiology.

Anadolu Kardiyol Derg

Clinical Physiology - Biomagnetism Research Center, Catholic University, Rome, Italy.

Published: July 2007

Objective: More than two decades of research work have shown that magnetocardiographic mapping (MCG) is reliable for non-invasive three-dimensional electroanatomical imaging (3D-EAI) of arrhythmogenic substrates. Magnetocardiographic mapping is now become appealing to interventional electrophysiologists after recent evidence that MCG-based dynamic imaging of atrial arrhythmias could be useful to classify patients with atrial fibrillation (AF) before ablation and to plan the most appropriate therapeutic approach. This article will review some key-points of 3D-EAI and discuss what is still missing to favor clinical applicability of MCG-based 3D-EAI.

Methods: Magnetocardiographic mapping is performed with a 36-channel unshielded mapping system, based on DC-SQUID sensors coupled to second-order axial gradiometers (pick-up coil 19 mm and 55-70 mm baselines; sensitivity of 20 fT/Sqrt[Hz] in above 1 Hz), as part of the electrophysiologic investigation protocol, tailored to the diagnostic need of each arrhythmic patient. More than 500 arrhythmic patients have been investigated so far.

Results: The MCG-based 3D-EAI has proven useful to localize well-confined arrhythmogenic substrates, such as focal ventricular tachycardia or preexcitation, to understand some causes for ablation failure, to study atrial electrophysiology including spectral analysis and localization of dominant frequency components of AF. However, MCG is still missing software tools for automatic and/or interactive 3D imaging, and multimodal data fusion equivalent to those provided with systems for invasive 3D electroanatomical mapping.

Conclusion: Since there is an increasing trend to favor interventional treatment of arrhythmias, clinical application of MCG 3D-EAI is foreseen to improve preoperative selection of patients, to plan the appropriate interventional approach and to reduce ablation failure.

Download full-text PDF

Source

Publication Analysis

Top Keywords

magnetocardiographic mapping
12
non-invasive three-dimensional
8
three-dimensional electroanatomical
8
electroanatomical imaging
8
arrhythmogenic substrates
8
plan appropriate
8
ablation failure
8
magnetocardiography non-invasive
4
imaging
4
imaging cardiac
4

Similar Publications

Non-Invasive Electroanatomical Mapping: A State-Space Approach for Myocardial Current Density Estimation.

Bioengineering (Basel)

December 2023

Department of Electrical Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.

Electroanatomical mapping is a method for creating a model of the electrophysiology of the human heart. Medical professionals routinely locate and ablate the site of origin of cardiac arrhythmias with invasive catheterization. Non-invasive localization takes the form of electrocardiographic (ECG) or magnetocardiographic (MCG) imaging, where the goal is to reconstruct the electrical activity of the human heart.

View Article and Find Full Text PDF

Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors.

Sensors (Basel)

January 2023

Device & Process Application Development Unit, Research & Development Center, Asahi Kasei Microdevices Corporation, Atsugi AXT Maintower 20F, 3050 Okata, Atsugi 243-0021, Kanagawa, Japan.

A magnetocardiograph that enables the clear observation of heart magnetic field mappings without magnetically shielded rooms at room temperatures has been successfully manufactured. Compared to widespread electrocardiographs, magnetocardiographs commonly have a higher spatial resolution, which is expected to lead to early diagnoses of ischemic heart disease and high diagnostic accuracy of ventricular arrhythmia, which involves the risk of sudden death. However, as the conventional superconducting quantum interference device (SQUID) magnetocardiographs require large magnetically shielded rooms and huge running costs to cool the SQUID sensors, magnetocardiography is still unfamiliar technology.

View Article and Find Full Text PDF

Background: P-wave duration, its dispersion and signal-averaged ECG, are currently used markers of vulnerability to atrial fibrillation (AF). However, since tangential atrial currents are better detectable at the body surface as magnetic than electric signals, we investigated the accuracy of magnetocardiographic mapping (MCG), recorded in unshielded clinical environments, as predictor of AF occurrence.

Methods: MCG recordings, in sinus rhythm (SR), of 71 AF patients and 75 controls were retrospectively analyzed.

View Article and Find Full Text PDF

Ventricular arrhythmias (VAs) with left bundle-branch-block and inferior axis morphology (LBBB-IA), suggestive of outflow tract (OT) origin, are a challenge in sports medicine because they can be benign or expression of a silent cardiomyopathy. Non-invasive classification is essential to plan ablation strategy if required. We aimed to evaluating magnetocardiographic (MCG) discrimination of OT-VAs site of origin (SoO).

View Article and Find Full Text PDF

Noninvasive mapping reveals recurrent and suddenly changing patterns in atrial fibrillation-a magnetocardiographic study.

Physiol Meas

February 2018

BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, PO Box 340, FI-00029 HUS, Finland. Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland, PO Box 12200, FI-00076 AALTO, Finland.

Objective: To study noninvasive magnetocardiographic (MCG) mapping of ongoing atrial fibrillation (AF) and, for the possible mapping patterns observed, to develop simplified but meaningful descriptors or parameters, providing a possible basis for future research and clinical use of the mappings.

Approach: MCG mapping with simultaneous ECG was recorded during arrhythmia in patients representing a range of typical, clinically classical atrial arrhythmias. The recordings were assessed using MCG map animations, and a method to compute magnetic field map orientation (MFO) and its time course was created to facilitate presentation of the findings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!