Polarized IR reflectance spectra of the monoclinic single crystal K2Ni(SO4)2.6H2O: dispersion analysis, dielectric and optical properties.

Spectrochim Acta A Mol Biomol Spectrosc

Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Macedonia.

Published: February 2008

Polarized IR reflectance spectra of K2Ni(SO4)2.6H2O single crystal (belonging to the group of Tutton salts) were recorded at near-normal incidence. From the dispersion analysis performed on the spectra recorded from the ac crystal plane, mode parameters: transversal frequency, oscillator strength, attenuation constant and the orientation of the transition moment were determined. The polarized spectrum along the b crystallographic axis was also recorded and a dispersion analysis performed. Comparison between the spectroscopically obtained transition moment directions with those obtained from the structure data for various modes is discussed. All dielectric tensor component values were obtained for the whole mid-IR frequency range. Also, the real and the imaginary parts of the complex indexes of refraction for the waves with wave vector in the direction of the b crystallographic axis and in the ac plane (when the direction of the electric vector is oriented along the b axis) were found as functions of frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2007.05.014DOI Listing

Publication Analysis

Top Keywords

dispersion analysis
12
polarized reflectance
8
reflectance spectra
8
single crystal
8
analysis performed
8
transition moment
8
crystallographic axis
8
spectra monoclinic
4
monoclinic single
4
crystal k2niso426h2o
4

Similar Publications

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

Stress wave dispersion can result in the loss or distortion of critical high-frequency data during high-strain-rate material tests or blast loading experiments. The purpose of this work is to demonstrate the benefits of correcting stress wave dispersion in split-Hopkinson pressure bar experiments under various testing situations. To do this, an innovative computational algorithm, SHPB_Processing.

View Article and Find Full Text PDF

A Submicrosecond-Response Ultrafast Microwave Ranging Method Based on Optically Generated Frequency-Modulated Pulses.

Sensors (Basel)

December 2024

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.

An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.

View Article and Find Full Text PDF

Aluminum-carbon nanotube (Al-CNT) composites represent a cutting-edge class of materials characterized by their exceptional mechanical, thermal, and electrical properties, making them highly promising for aerospace, automotive, electronics, and energy applications. This review systematically examines the impact of various fabrication methods, including conventional powder metallurgy, diffusion and reaction coupling, as well as adhesive and reaction bonding on the microstructure and performance of Al-CNT composites. The analysis emphasizes the critical role of CNT dispersion, interfacial bonding, and the formation of reinforcing phases, such as AlC and AlO, in determining the mechanical strength, wear resistance, corrosion resistance, and thermal stability of these materials.

View Article and Find Full Text PDF
Article Synopsis
  • A magnesium-aluminum layered double hydroxide (LDH) was created using a coprecipitation technique from a nitrate solution and transformed into a layered double oxide (LDO) after being heated to 450 °C.
  • During rehydration in a fluoride solution, the LDH's original structure was restored and fluoride ions were absorbed to maintain balance, a finding confirmed by energy-dispersive X-ray spectroscopy (EDS).
  • The study demonstrated that using ethanol during the rehydration process significantly increased fluoride incorporation, and the fluoride release pattern from the material revealed a rapid initial release followed by a slower, prolonged release.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!