The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/092986607780782795 | DOI Listing |
Toxins (Basel)
January 2025
Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
Chinese coral snakes () are highly neglected regarding their venom profiles and harm to humans, which impedes our ability to deeply understand their biological properties and explore their medicinal potential. In this study, we performed a comparative analysis to reveal the venom profiles of two Chinese coral snakes in terms of their venom yields, proteomic profiles, and immunorecognition by commercial antivenoms. The results showed that expels more venom (lyophilized venom mass) than but possesses a similar solid venom content.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.
View Article and Find Full Text PDFCardiovasc Pathol
January 2025
Department of Anatomical Sciences, St. George's University, School of Medicine, West Indies, Grenada; Department of Pathology, St. George's University, School of Medicine, West Indies, Grenada; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota, USA; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:
Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Toxic Organisms Research Centre, Faculty of Science, University of Khartoum, Sudan.
Snakebite envenomation (SBE) is a neglected tropical disease. It causes substantial morbidity and mortality in Sudan. Despite its endemicity, there is a substantial lack of up-to-date data on venomous snakes and their geographical distribution in Sudan, with most information dating back to the early twentieth century.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Department of Biology, Chemistry and Physics, Faculty of Health, Natural Resources and Applied Sciences, Namibia University of Science and Technology, Private Bag 13388, 13 Jackson Kaujeua Street Windhoek, Windhoek, Namibia.
Background: Despite Naja nigricincta nigricincta being responsible for most snake envenomation in remote Namibian regions, an effective intervention against its venom remains undiscovered. This study aimed to scientifically validate Namibian folklore claims about Senegalia mellifera extract's efficacy against snake envenomation.
Methods: In vitro assays were conducted to assess the inhibitory potential of S.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!