The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2007.04.053DOI Listing

Publication Analysis

Top Keywords

sem analysis
8
heavy metals
8
calcareous particles
8
calcite dissolution
8
concomitant zn-cd
4
retention
4
zn-cd retention
4
retention carbonated
4
carbonated fluvio-glacial
4
fluvio-glacial deposit
4

Similar Publications

This work aimed to synthesize a new acetyl triazolyl uracil (UT) compound and subsequently utilize it to obtain a new chitosan-based Schiff base polymer (CH-UT). The new derivative was characterized using elemental analysis, FTIR, HNMR, XRD, TGA, DSC, and SEM analyses. Both UT and CH-UT were evaluated for their antibacterial activities against various Gram-positive and Gram-negative bacteria.

View Article and Find Full Text PDF

Introduction: Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.

Methods: Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis.

View Article and Find Full Text PDF

The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.

View Article and Find Full Text PDF

Preparation of curcumin submicron particles by supercritical antisolvent method with external adjustable annular gap nozzle.

Sci Rep

January 2025

Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.

The supercritical antisolvent (SAS) method can effectively improve the bioavailability of poorly water-soluble drugs. However, the current supercritical equipment and processes were not fully developed, making industrialization difficult to achieve. Therefore, an externally adjustable annular gap nozzle and its supporting equipment were designed.

View Article and Find Full Text PDF

Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!