The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2007.05.016 | DOI Listing |
Sci Total Environ
January 2025
Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 Republic of Korea.
The simultaneous removal reaction (SRR) is a pioneering approach for achieving the simultaneous removal of anthropogenic NO and CO pollutants through catalytic reactions. To facilitate this removal across diverse industrial fields, it is crucial to understand the trade-offs and synergies among the multiple reactions involved in the SRR process. In this study, we developed mixed metal oxide nanostructures derived from layered double hydroxides as catalysts for the SRR, achieving high catalytic conversions of 93.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. Electronic address:
Photocatalytic technology provides a new approach for the harmless treatment of low concentration NO in the atmosphere. The development of high-performance semiconductor materials to improve the light absorption efficiency and the separation efficiency of photogenerated carriers is the focus of the research. Bismuth oxybismuth sulfate (BiOSO) shows significant potential for photocatalytic NO purification due to its unique electronic and layered structure.
View Article and Find Full Text PDFChemosphere
December 2024
Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China.
The selective oxidation of NH-N into dinitrogen (N) is still a challenge. Currently, traditional advanced oxidation processes often involve in the chlorine free radicals to increase the selectivity of NH-N oxidation products towards N but is usually accompanied by the production of many toxic disinfection by-product. Herein, we reported a novel catalytic ozonation system (UV/O/MgO/NaSO) for selective NH-N oxidation based on the reducing capability and photochemical properties of NaSO.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 1698555, Japan.
This article presents a review of catalytic processes used at low temperatures to reduce emissions of nitrogen oxides (NO) and nitrous oxide (NO), which are exceedingly important in terms of their environmental impacts on the Earth. With conventional purification technologies, it has been difficult to remove these compounds under low-temperature conditions. By applying a catalytic process in an electric field for the three reactions of three-way catalysts (TWC), NO storage reduction catalysts (NSR), and direct decomposition of NO, we have achieved high catalytic activity even at low temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!