Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes.

Bioresour Technol

INRA, Unité d'Agronomie Laon-Reims-Mons, 2 espl R Garros, BP 224, 51686 Reims Cedex 2, France.

Published: April 2008

Both dilute and concentrated vinasse can be spread on agricultural fields or used as organic fertilizer. The effects of different characteristics of the original raw material on the biochemical composition of vinasse and their C and N mineralization in soil were investigated. Vinasse samples were obtained from similar industrial fermentation processes based on the growth of microorganisms on molasses from different raw material (sugar beet or sugar cane) and vinasse concentration (dilute or concentrated). The nature of the raw material used for fermentation had the greatest effect on the nature and size of the resistant organic pool. This fraction included aromatic compounds originating from the raw material or from complex molecules and seemed to be quantitatively related to acid-insoluble N. Samples derived from sugar beet were richer in N compounds and induced greater net N mineralization. The effect of evaporation varied with the nature of the raw material. Concentration led to a slight increase in the abundance of phenolic compounds, acid-insoluble fraction, and a slight decrease in the labile fraction of vinasses partly or totally derived from sugar beet. The effect of the dilute vinasse from sugar cane was greater. The concentrated vinasse had a smaller labile fraction, induced N immobilization at the beginning of incubation, and exhibited greater N concentration in the acid-insoluble fraction than the dilute vinasse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2007.04.012DOI Listing

Publication Analysis

Top Keywords

raw material
24
sugar beet
12
vinasse
8
material fermentation
8
dilute concentrated
8
concentrated vinasse
8
sugar cane
8
nature raw
8
derived sugar
8
acid-insoluble fraction
8

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.

Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.

View Article and Find Full Text PDF

In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.

View Article and Find Full Text PDF

Introduction: Owing to its high prevalence, colossal potential of chemoresistance, metastasis, and relapse, breast cancer (BC) is the second leading cause of cancer-related fatalities in women. Several treatments (eg, chemotherapy, surgery, radiations, hormonal therapy, etc.) are conventionally prescribed for the treatment of BC; however, these are associated with serious systemic aftermaths.

View Article and Find Full Text PDF

Targeted Conversion of Biomass into Primary Diamines via Carbon Shell-Confined Cobalt Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China.

Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!