Thimerosal, which releases the ethyl mercury radical as the active species, has been used as a preservative in many currently marketed vaccines throughout the world. Because of concerns that its toxicity could be similar to that of methyl mercury, it is no longer incorporated in many vaccines in the United States. There are reasons to believe, however, that the disposition and toxicity of ethyl mercury compounds, including thimerosal, may differ substantially from those of the methyl form. The current study sought to compare, in neonatal mice, the tissue concentrations, disposition and metabolism of thimerosal with that of methyl mercury. ICR mice were given single intramuscular injections of thimerosal or methyl mercury (1.4 mg Hg kg(-1)) on postnatal day 10 (PND 10). Tissue samples were collected daily on PND 11-14. Most analysed tissues demonstrated different patterns of tissue distribution and a different rate of mercury decomposition. The mean organic mercury in the brain and kidneys was significantly lower in mice treated with thimerosal than in the methyl mercury-treated group. In the brain, thimerosal-exposed mice showed a steady decrease of organic mercury levels following the initial peak, whereas in the methyl mercury-exposed mice, concentrations peaked on day 2 after exposure. In the kidneys, thimerosal-exposed mice retained significantly higher inorganic mercury levels than methyl mercury-treated mice. In the liver both organic and inorganic mercury concentrations were significantly higher in thimerosal-exposed mice than in the methyl mercury group. Ethyl mercury was incorporated into growing hair in a similar manner to methyl mercury. The data showing significant kinetic differences in tissue distribution and metabolism of mercury species challenge the assumption that ethyl mercury is toxicologically identical to methyl mercury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.1272 | DOI Listing |
Microorganisms
December 2024
Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta 470006, Magdalena, Colombia.
Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.
View Article and Find Full Text PDFEnviron Pollut
December 2024
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang, 551400, China.
Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Resources and Environment, Southwest University, Chongqing, 400715, China.
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!