Change in hydration number of proteins upon unfolding, Deltan, was obtained from the analysis of thermal unfolding behavior of proteins in various sugar solutions with water activity, a(W), varied. By applying the reciprocal form of Wyman-Tanford equation, Deltan was determined to be 133.9, 124.1, and 139.2 per protein molecule for ribonuclease A at pH=5.5, 4.2, and 2.8, respectively, 201.4 for lysozyme at pH=5.5, and 100.1 for alpha-chymotripnogen A at pH=2.0. Among the sugars tested, reducing sugars gave the lower apparent Deltan as compared with nonreducing sugars probably because of the direct interaction of reducing terminal with amino group of proteins at a high temperature. From the knowledge of Deltan, a new thermodynamic model for protein stability was proposed with explicit consideration for hydration state change of protein upon unfolding. From this model, the contribution of a(W) was proven to be always positive for stabilization of proteins and its effect is not negligible depending on Deltan and a(W).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2007.05.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!