Rotationally resolved fluorescence excitation spectra of several bands in the S1<--S0 electronic spectrum of 9,10-dihydrophenanthrene (DHPH) have been observed and assigned. Each band was fit using rigid rotor Hamiltonians in both electronic states. Analyses of these data reveal that DHPH has a nonplanar configuration in its S0 state with a dihedral angle between the aromatic rings (phi) of approximately 21.5 degrees. The data also show that excitation of DHPH with UV light results in a more planar structure of the molecule in the electronically excited state, with phi approximately 8.5 degrees. Three prominent Franck-Condon progressions appear in the low resolution spectrum, all with fundamental frequencies lying below 300 cm(-1). Estimates of the potential energy surfaces along each of these coordinates have been obtained from analyses of the high resolution spectra. The remaining barrier to planarity in the S1 state is estimated to be approximately 2650 cm(-1) along the bridge deformation mode and is substantially reduced by excitation of the molecule along the (orthogonal) ring twisting coordinate.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2732753DOI Listing

Publication Analysis

Top Keywords

rotationally resolved
8
resolved electronic
4
electronic spectra
4
spectra 910-dihydrophenanthrene
4
910-dihydrophenanthrene "floppy"
4
"floppy" molecule
4
molecule gas
4
gas phase
4
phase rotationally
4
resolved fluorescence
4

Similar Publications

Ab Initio Rotational and Vibrational Spectroscopy of CH Radicals at the Coupled Cluster Level.

J Phys Chem A

January 2025

Department of Chemistry, University of California, Davis, One Shields Ave., Davis, California 95616, United States.

Combustion and pyrolysis processes of allene and propyne are known to involve radicals with the structural formula CH, the most stable of which is the classic resonance-stabilized allyl radical. In addition to allyl, four other isomers of CH are possible: the propene derivatives -1-propenyl, -1-propenyl, and 2-propenyl, as well as the cyclopropane derivative cyclopropyl. Among these 5 species, the allyl radical has been extensively studied both theoretically and spectroscopically; however, little is known about the spectroscopy of the cyclopropyl radical, and virtually no experimental spectroscopic data are available for the remaining three.

View Article and Find Full Text PDF

Ab initio study on the dynamics and spectroscopy of collective rovibrational polaritons.

J Chem Phys

January 2025

Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.

Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.

View Article and Find Full Text PDF

We synthesized and spectroscopically investigated monolayer (ML) C on the topological insulator (TI) BiTe. This C/BiTe heterostructure is characterized by an excellent translational order in a novel (4 × 4) C superstructure on a (9 × 9) cell of BiTe. Angle-resolved photoemission spectroscopy (ARPES) of C/BiTe reveals that ML C accepts electrons from the TI at room temperature, but no charge transfer occurs at low temperatures.

View Article and Find Full Text PDF

Bond Dissociation Energy of F with Spectroscopic Accuracy Measured Using Predissociation and Threshold Fragment Yield Spectroscopy.

J Phys Chem Lett

December 2024

Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China.

In this study, we conducted precise measurements to determine the bond dissociation energy of F, yielding a value of 12939.95 ± 0.40 cm or 154.

View Article and Find Full Text PDF

The F + HD ( = 0, 1; = 1) reaction: angular momentum correlations in the low (<1 meV) collision energy regime.

Phys Chem Chem Phys

December 2024

Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain.

A detailed analysis of the low collision energy (0.03-10 meV) integral reaction cross-section has been carried out for the F + HD ( = 0, 1; = 1)→ HF(DF) + D(H) reaction using accurate, fully converged time-independent hyperspherical quantum dynamics. Particular attention has been paid to the shape (orbiting) resonances and their assignment to the orbital () and total () angular momenta as well as to the product's state resolved cross-sections at the energies of the resonances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!