Etoposide is one of the most successful chemotherapeutic agents used for the treatment of human cancers. The drug kills cells by inhibiting the ability of topoisomerase II to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. Etoposide is composed of a polycyclic ring system (rings A-D), a glycosidic moiety at the C4 position, and a pendent ring (E-ring) at the C1 position. Although drug-enzyme contacts, as opposed to drug-DNA interactions, mediate the entry of etoposide into the topoisomerase II-drug-DNA complex, the substituents on etoposide that interact with the enzyme have not been identified. Therefore, saturation transfer difference [1H]-nuclear magnetic resonance spectroscopy and protein-drug competition binding assays were employed to define the groups on etoposide that associate with yeast topoisomerase II and human topoisomerase IIalpha. Results indicate that the geminal protons of the A-ring, the H5 and H8 protons of the B-ring, and the H2' and H6' protons and the 3'- and 5'-methoxyl protons of the pendent E-ring interact with both enzymes in the binary protein-ligand complexes. In contrast, no significant nuclear Overhauser enhancement signals arising from the C-ring, the D-ring, or the C4 glycosidic moiety were observed with either enzyme, suggesting that there is limited or no contact between these portions of etoposide and topoisomerase II in the binary complex. The functional importance of E-ring substituents was confirmed by topoisomerase II-mediated DNA cleavage assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888091PMC
http://dx.doi.org/10.1021/bi700272uDOI Listing

Publication Analysis

Top Keywords

substituents etoposide
8
etoposide interact
8
interact enzyme
8
glycosidic moiety
8
etoposide topoisomerase
8
topoisomerase
7
etoposide
7
topoisomerase drug
4
drug interaction
4
interaction domains
4

Similar Publications

A series of sulfonamide-derived quinoxaline 1,4-dioxides were synthesized and evaluated as inhibitors of carbonic anhydrases (CA) with antiproliferative potency. Overall, the synthesized compounds demonstrated good inhibitory activity against four CA isoforms. Compound 7g exhibited favorable potency in inhibiting a CA IX isozyme with a value of 42.

View Article and Find Full Text PDF

A novel series of oxazole incorporated naphthyridine (21 a-j) derivatives were designed and, synthesized followed by screening of their anticancer activity profiles against human breast cancer (MCF-7), human lung cancer (A549) and human prostate (PC3 & DU-145) cancer cell lines by employing MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay using etoposide as the positive control. Of these compounds, N-(6-chloro-3-(4-(3,4,5-trimethoxyphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine with 3,4,5-trimethoxy substituent on the aryl moiety attached to oxazole ring showed potent anticancer activity against PC3, A549, MCF-7, and DU-145 cell lines with IC values of 0.13±0.

View Article and Find Full Text PDF

Guanidine Derivatives Containing the Chalcone Skeleton Are Potent Antiproliferative Compounds against Human Leukemia Cells.

Int J Mol Sci

December 2022

Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Química Orgánica y Bioquímica, Universidad de Las Palmas de Gran Canaria, Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), 35016 Las Palmas de Gran Canaria, Spain.

In this study, we investigated the effects of eleven synthetic guanidines containing the 1,3-diphenylpropenone core on the viabilities of six human cancer cells. The most cytotoxic compound against human cancer cells of this series contains a -tosyl group and a -methylpiperazine moiety . It was cytotoxic against leukemia cells (U-937, HL-60, MOLT-3, and NALM-6) with significant effects against Bcl-2-overexpressing U-937/Bcl-2 cells as well as the human melanoma SK-MEL-1 cell line.

View Article and Find Full Text PDF

Identification of Novel 4'--Demethyl-epipodophyllotoxin Derivatives as Antitumor Agents Targeting Topoisomerase II.

Molecules

August 2022

Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.

C4 variation of 4'--demethyl-epipodophyllotoxin (DMEP) is an effective approach to optimize the antitumor spectra of this compound class. Accordingly, two series of novel DMEP derivatives were synthesized, and as expected, the antitumor spectra of these derivatives varied with different C4 substituents. Notably, most compounds showed significant inhibition against the etoposide (2)-resistant KBvin cells.

View Article and Find Full Text PDF

Structure-activity relationships reveal a 2-furoyloxychalcone as a potent cytotoxic and apoptosis inducer for human U-937 and HL-60 leukaemia cells.

Bioorg Chem

October 2022

Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Química Orgánica y Bioquímica, Universidad de Las Palmas de Gran Canaria, Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), 35016 Las Palmas de Gran Canaria, Spain. Electronic address:

Synthetic flavonoids with new substitution patterns have attracted attention as potential anticancer drugs. Here, twelve chalcones were synthesized and their antiproliferative activities against five human tumour cells were evaluated. This series of chalcone derivatives was characterized by the presence of an additional aromatic or heterocyclic ring linked by an ether, in the case of a benzyl radical, or an ester or amide functional group in the case of a furoyl radical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!