Monocopper center embedded in a biomimetic cavity: from supramolecular control of copper coordination to redox regulation.

J Am Chem Soc

Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, UMR CNRS 6521, Université de Bretagne Occidentale, CS 93837, 6 avenue Le Gorgeu, 29238 Brest cedex 3, France.

Published: July 2007

The electrochemical behavior of diversely substituted Cu-N3-calix[6]arene, enzyme-like, "funnel" complexes is analyzed. The Cu(II)/Cu(I) redox process is regulated by the supramolecular organization of the Cu coordination. The presence of a "shoetree" alkyl nitrile guest molecule inside the host cavity is a prerequisite for a dynamic redox behavior. Combination of supramolecular CH-pi weak interactions with the calixarene cavity and electronic/steric effects from the N3 substituting groups (pyridine, imidazole, pyrrolidine) enforces the preferential geometrical pattern adopted by Cu. This dictates the pathway of the electron-transfer process and, thus, the thermodynamics and kinetics of the redox reaction in the framework of a square-scheme mechanism. The present observations recall strongly the redox control exerted by the protein matrix on copper proteins through biological concepts such as induced fit mechanism, protein foldings, and entatic and allosteric effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja071219hDOI Listing

Publication Analysis

Top Keywords

redox
5
monocopper center
4
center embedded
4
embedded biomimetic
4
biomimetic cavity
4
cavity supramolecular
4
supramolecular control
4
control copper
4
copper coordination
4
coordination redox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!