In order to study feto-maternal interactions in the bovine synepitheliochorial placenta primary cell cultures of both placentomal components throughout pregnancy, namely caruncular epithelial cells and trophoblast cells were developed. The aim of this study was to validate and improve a method to culture caruncular epithelial cells and fetal trophoblast from manually separated placentomes. Prior to seeding the presence of fetal cells in caruncular samples and vice-versa could be demonstrated by the detection of the Y-chromosome via fluorescence in situ hybridization (FISH) provided the fetus was male. Epitheloid shaped cells present in both cultures (cotyledon and caruncle) were characterized on a morphological basis as well as by immunofluorescence and Western blot thereby detecting cytokeratin, zonula occludens-1 and vimentin but not alpha-smooth muscle actin and desmin. The absence of the Y-chromosome demonstrated the caruncular origin of epitheloid cells. In addition, a population of polygonally shaped cells derived from the cotyledon was propagated and displayed the same cytoskeletal characteristics as described above. The presence of the Y-chromosome confirmed the fetal origin of these cells and the lacking uptake of fluorescence conjugated low density lipoprotein, specific for endothelial cells, identified polygonally shaped cells as fetal trophoblast cells. In conclusion, the cross-contamination of maternal and fetal cells in manually separated placentomes should be considered in future experiments as it may lead to false positive results dependent on the sensitivity of the method applied. This study highlights the importance of an appropriate cell characterization and identification, especially when isolating primary cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2007.05.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!