The functionality of optical components relies heavily on the composition-dependent properties of germanosilicate materials, which include the refractive index, photosensitivity, and microstructural properties. Recent studies and parallel developments are presented of germanosilicate films with composition x of Ge content (i.e., xGeO(2):(1-x)SiO(2)) that were synthesized by the solgel process for various integrated photonic applications undertaken. The following novel aspects are discussed with respect to the effect of composition of the glassy films (0.05=x=0.40): determination of spectral optical properties, UV imprinting of optical waveguides with relatively large index change (Dn), and quantum-well intermixing enhancement observed in InGaAs(P)/InP quantum-well optical devices. The implications of the results are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.46.004397 | DOI Listing |
J Biomed Opt
January 2025
CIFICEN (UNCPBA - CICPBA - CONICET), Tandil, Argentina.
Significance: In the last years, time-resolved near-infrared spectroscopy (TD-NIRS) has gained increasing interest as a tool for studying tissue spectroscopy with commercial devices. Although it provides much more information than its continuous wave counterpart, accurate models interpreting the measured raw data in real time are still lacking.
Aim: We introduce an analytical model that can be integrated and used in TD-NIRS data processing software and toolkits in real time.
Nanoscale Adv
January 2025
Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt +202 2615 2559.
Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.
View Article and Find Full Text PDFNanoscale
January 2025
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.
View Article and Find Full Text PDFNature
January 2025
Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.
Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.
View Article and Find Full Text PDFNature
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!