Subwavelength metallic and dielectric diffraction gratings which rotate the linear polarization of incident light by 90 degrees are examined. Using rigorous diffraction theory in total-internal-reflection configuration, it is shown that full conversion from incident transverse electric field to transverse magnetic zero-order field can be achieved with both dielectric and metallic elements, but dielectric gratings provide higher efficiency and are thus preferable. The fabrication aspects and constraints are discussed in detail and the behavior of the gratings over broad wavelength bands is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.46.004258DOI Listing

Publication Analysis

Top Keywords

metallic dielectric
8
polarization conversion
4
conversion conical
4
conical diffraction
4
diffraction metallic
4
dielectric
4
dielectric subwavelength
4
gratings
4
subwavelength gratings
4
gratings subwavelength
4

Similar Publications

Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance.

Nat Commun

January 2025

State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.

View Article and Find Full Text PDF

Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.

View Article and Find Full Text PDF

This paper introduces an analytical method for studying power transmission through an infinite array of helical-shaped metal particles in a lossy dielectric medium. While the assessment of composite slabs' transmitted power has been extensively researched in the electromagnetic interference (EMI) shielding field, many studies lack an adequate problem description. The primary inadequacy of these studies is the need for an analytical framework.

View Article and Find Full Text PDF

Intervalence plasmons in boron-doped diamond.

Nat Commun

January 2025

Department of Nuclear, Plasma, and Radiological Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.

Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown.

View Article and Find Full Text PDF

Premelted-Substrate-Promoted Selective Etching Strategy Realizing CVD Growth of High-Quality Graphene on Dielectric Substrates.

ACS Appl Mater Interfaces

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!