LPS, a molecule produced by Gram-negative bacteria, is known to activate both innate immune cells such as macrophages and adaptive immune B cells via TLR4 signaling. Although TLR4 is also expressed on T cells, LPS was observed not to affect T cell proliferation or cytokine secretion. We now report, however, that LPS can induce human T cells to adhere to fibronectin via TLR4 signaling. This response to LPS was confirmed in mouse T cells; functional TLR4 and MyD88 were required, but T cells from TLR2 knockout mice could respond to LPS. The human T cell response to LPS depended on protein kinase C signaling and involved the phosphorylation of the proline-rich tyrosine kinase (Pyk-2) and p38. LPS also up-regulated the T cell expression of suppressor of cytokine signaling 3, which led to inhibition of T cell chemotaxis toward the chemokine stromal cell-derived factor 1alpha (CXCL12). Thus, LPS, through TLR4 signaling, can affect T cell behavior in inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.179.1.41 | DOI Listing |
Adv Healthc Mater
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
The present study aimed to extract and purify the glycoprotein from Cirsii Herba (CHPs), and investigate its immunomodulatory activity and molecular mechanism in RAW264.7 macrophages. The results showed that CHPs contained 14.
View Article and Find Full Text PDFEBioMedicine
January 2025
Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR, Grenoble, 5309, France.
Background: mRNA-based cancer vaccines show promise in triggering antitumour immune responses. To combine them with existing immunotherapies, the intratumoral immune microenvironment needs to be deeply characterised. Here, we test nanostructured lipid carriers (NLCs), the so-called Lipidots®, for delivering unmodified mRNA encoding Ovalbumin (OVA) antigen to elicit specific antitumour responses.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China. Electronic address:
Background: Non-alcoholic steatohepatitis (NASH), an advanced manifestation of non-alcoholic fatty liver disease (NAFLD), is characterized by hepatocyte injury, inflammation, and fibrosis. Saturated fatty acids (SFAs) have emerged as key contributors to hepatocyte lipotoxicity and disease progression. Toll-like receptor 4 (TLR4) acts as a sentinel for diverse ligands, including lipopolysaccharide (LPS) and endogenous molecules like palmitic acid (PA)-induced ceramide (CER) accumulation, promoting hepatocyte demise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!