The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles.

Cell Microbiol

Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.

Published: October 2007

Intracellular replication of Salmonella enterica occurs in membrane-bound compartments, called Salmonella-containing vacuoles (SCVs). Following invasion of epithelial cells, most SCVs migrate to a perinuclear region and replicate in close association with the Golgi network. The association of SCVs with the Golgi is dependent on the Salmonella-pathogenicity island-2 (SPI-2) type III secretion system (T3SS) effectors SseG, SseF and SifA. However, little is known about the dynamics of SCV movement. Here, we show that in epithelial cells, 2 h were required for migration of the majority of SCVs to within 5 microm from the microtubule organizing centre (MTOC), which is located in the same subcellular region as the Golgi network. This initial SCV migration was saltatory, bidirectional and microtubule-dependent. An intact Golgi, SseG and SPI-2 T3SS were dispensable for SCV migration to the MTOC, but were essential for maintenance of SCVs in that region. Live-cell imaging between 4 and 8 h post invasion revealed that the majority of wild-type SCVs displaced less than 2 microm in 20 min from their initial starting positions. In contrast, between 6 and 8 h post invasion the majority of vacuoles containing sseG, sseF or ssaV mutant bacteria displaced more than 2 microm in 20 min from their initial starting positions, with some undergoing large and dramatic movements. Further analysis of the movement of SCVs revealed that large displacements were a result of increased SCV speed rather than a change in their directionality, and that SseG influences SCV motility by restricting vacuole speed within the MTOC/Golgi region. SseG might function by tethering SCVs to Golgi-associated molecules, or by controlling microtubule motors, for example by inhibiting kinesin recruitment or promoting dynein recruitment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2062534PMC
http://dx.doi.org/10.1111/j.1462-5822.2007.00977.xDOI Listing

Publication Analysis

Top Keywords

spi-2 type
8
type iii
8
iii secretion
8
secretion system
8
salmonella-containing vacuoles
8
scvs
8
epithelial cells
8
golgi network
8
sseg ssef
8
scv migration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!