Objective: Strategies to expand hematopoietic stem cells (HSCs) ex vivo are of key interest. The objective of this study was to resolve if ability of HOXB4, previously documented to induce a significant expansion of HSCs in culture, may extend to other HOX genes and also to further analyze the HOX sequence requirements to achieve this effect.
Methods: To investigate the ability of Nucleoporin98-Homeobox fusion genes to stimulate HSC self-renewal, we evaluated their presence in 10- to 20-day cultures of transduced mouse bone marrow cells. Stem cell recovery was measured by limiting-dilution assay for long-term competitive repopulating cells (CRU Assay).
Results: These experiments revealed remarkable expansions of Nucleoporin98-Homeobox-transduced HSCs (1000-fold to 10,000-fold over input) in contrast to the expected decline of HSCs in control cultures. Nevertheless, the Nucleoporin98-Homeobox-expanded HSCs displayed no proliferative senescence and retained normal lympho-myeloid differentiation activity and a controlled pool size in vivo. Analysis of proviral integration patterns showed the cells regenerated in vivo were highly polyclonal, indicating they had derived from a large proportion of the initially targeted HSCs. Importantly, these effects were preserved when all HOX sequences flanking the homeodomain were removed, thus defining the homeodomain as a key and independent element in the fusion.
Conclusion: These findings create new possibilities for investigating HSCs biochemically and genetically and for achieving clinically significant expansion of human HSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774852 | PMC |
http://dx.doi.org/10.1016/j.exphem.2007.02.012 | DOI Listing |
J Clin Med
December 2024
Department of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland.
Haematological malignancies and their treatment regimens often lead to various complications that impair patients' physical functioning. This study aimed to assess the level of physical activity and exercise capacity in patients with haematological malignancies who were qualified for haematopoietic stem cell transplantation (HSCT). A prospective, single-centre study was conducted on patients with haematological malignancies qualified for HSCT (study group, = 103) and a cohort of healthy volunteers (reference group, = 100).
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Health Economics and Medical Law, Faculty of Health Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland.
Patient satisfaction is one of the indicators of the quality of nursing care. The purpose of this study is to find out the level of satisfaction of patients with multiple myeloma with the quality of nursing care in oncology units. Data were obtained by a diagnostic survey method, using the Newcastle Nursing Satisfaction Scale.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
The treatment of Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-cell ALL) has seen substantial progress over the past two decades. The introduction of tyrosine kinase inhibitor (TKIs) has resulted in dramatic improvements in long-term survival. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), with its curative potential, has always been an integral part of the treatment algorithm of Ph+ ALL.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!