Aggregation of the beta-amyloid peptide (Abeta) to amyloid plaques is a key event in Alzheimer's disease. According to the amyloid-cascade hypothesis, Abeta aggregates are toxic to neurons through the production of reactive oxygen species (ROS). Copper ions play an important role, because they are able to bind to Abeta and influence its aggregation properties. Moreover, Cu-Abeta is supposed to be directly involved in ROS production. To get a better understanding of these reactions, we measured the production of HO(.) and the redox potential of Cu-Abeta. The results were compared to other biological copper-peptide complexes in order to get an insight into the biological relevance. Cu-Abeta produced more HO(.) than the complex of copper with Asp-Ala-His-Lys (Cu-DAHK), but less than with Gly-His-Lys (Cu-GHK). Cyclic voltammetry revealed that the order for reduction potential is Cu-GHK>Cu-Abeta>Cu-DAHK, but for the oxidation potential the order is reversed. Thus, easier copper redox cycling correlated to higher HO(.) production. The copper complex of the form Abeta1-42 showed a HO(.) production five-times higher than that of the form Abeta1-40. Time-dependence and aggregation studies suggest that an aggregation intermediate is responsible for this increased HO(.) production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200700111DOI Listing

Publication Analysis

Top Keywords

production
6
aggregation
5
redox chemistry
4
chemistry copper-amyloid-beta
4
copper-amyloid-beta generation
4
generation hydroxyl
4
hydroxyl radical
4
radical presence
4
presence ascorbate
4
ascorbate linked
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!