The inhibition by anthocyanins of the free radical-mediated peroxidation of linoleic acid in a SDS micelle system was studied at pH 7.4 and at 37 degrees C, by oxygraphic and ESR tecniques. The number of peroxyl radicals trapped by anthocyanins and the efficiency of these molecules in the trapping reaction, which are two fundamental aspects of the antioxidant action, were measured and discussed in the light of the molecular structure. In particular the contribution of the substituents to the efficiency is -OH>-OCH(3)>-H. By ESR we found that the free radicals of anthocyanins are generated in the inhibition of the peroxidation of linoleic acid. The life time of these radical intermediates, the concentration of which ranges from 7 to 59 nM under our experimental conditions, is strictly correlated with the anthocyanin efficiency and with the heat of formation of the radical, as calculated by a semiempirical molecular orbital approach.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715760701261533DOI Listing

Publication Analysis

Top Keywords

radical intermediates
8
peroxidation linoleic
8
linoleic acid
8
peroxyl radical
4
radical trapping
4
trapping activity
4
anthocyanins
4
activity anthocyanins
4
anthocyanins generation
4
generation free
4

Similar Publications

Cyclic dipeptides are produced by organisms across all domains of life, with many exhibiting anticancer and antimicrobial properties. Oxidations are often key to their biological activities, particularly C-C bond oxidation catalysed by tailoring enzymes including cyclodipeptide oxidases. These flavin-dependent enzymes are underexplored due to their intricate three-dimensional arrangement involving multiple copies of two distinct small subunits, and mechanistic details underlying substrate selection and catalysis are lacking.

View Article and Find Full Text PDF

A review on oxidative stress in organophosphate-induced neurotoxicity.

Int J Biochem Cell Biol

January 2025

Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait. Electronic address:

Acetylcholinesterase inhibition, the principal mechanism of acute organophosphorus compound toxicity, cannot explain neuropsychiatric symptoms occurring after exposure to low organophosphate concentrations causing no cholinergic symptoms. Organophosphate-triggered oxidative stress has increasingly come into focus, occurring when the action of reactive oxygen species, generated from free radicals, is not compensated by antioxidant free radical scavengers. Being nucleophilic, organophosphates can easily accept an electron, thereby generating free radicals.

View Article and Find Full Text PDF

Bio-green synthesis of bismuth oxide nanoparticles using almond gum for enhanced photocatalytic degradation of water pollutants and biocompatibility.

Int J Biol Macromol

January 2025

Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University, Riyadh 11421, Saudi Arabia. Electronic address:

The discharge of dye-contaminated industrial wastewater is a significant source of water and soil pollution. The eco-friendly synthesis of multifunctional bismuth oxide nanoparticles (BiO-NPs) offers a promising approach for the removal of toxic contaminants. The incorporation of natural polymers in nanoparticle production has gained significant scientific attention due to their environmentally friendly and efficient properties.

View Article and Find Full Text PDF

Organofluorines, particularly those containing trifluoromethyl (CF3) groups, play a critical role in medicinal chemistry. While trifluoromethylation of alkenes provides a powerful synthetic route to construct CF3-containing compounds with broad structural and functional diversity, achieving enantioselective control in these reactions remains a formidable challenge. In this study, we engineered a nonheme iron enzyme, quercetin 2,3-dioxygenase from Bacillus subtilis (BsQueD), for the enantioselective trifluoromethylazidation of alkenes.

View Article and Find Full Text PDF

Objectives: An increasing number of patients with prostate cancer (PCa) undergo assessment with magnetic resonance imaging (MRI) and prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT). This offers comprehensive multimodality staging but can lead to discrepancies. The objective was to assess the rates and types of discordance between MRI and PSMA-PET/CT for primary PCa assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!