F2L, a peptide derived from heme-binding protein, inhibits formyl peptide receptor-mediated signaling.

Biochem Biophys Res Commun

Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea.

Published: August 2007

F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein. Very recently, F2L was identified as an endogenous chemoattractant peptide acting specifically through formyl peptide receptor-like (FPRL)2. In the present study, we report that F2L stimulates chemotactic migration in human neutrophils. However, F2L inhibits formyl peptide receptor (FPR) and FPRL1 activities, resulting in the complete inhibition of intracellular calcium increases, and superoxide generation induced by N-formyl-Met-Leu-Phe, MMK-1, or Trp-Lys-Tyr-Met-Val-d-Met (WKYMVm) in human neutrophils. In terms of the inhibitory role of F2L on FPR- and FPRL-mediated signaling, we found that F2L competitively inhibits the binding of (125)I-WKYMVm to its specific receptors, FPR and FPRL1. F2L is the first endogenous molecule that inhibits FPR- and FPRL1-mediated signaling, and is expected to be useful in the study of FPR and FPRL1 signaling and in the development of drugs to treat diseases involving the FPR family of receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.06.001DOI Listing

Publication Analysis

Top Keywords

formyl peptide
12
fpr fprl1
12
f2l
8
peptide derived
8
heme-binding protein
8
inhibits formyl
8
signaling f2l
8
human neutrophils
8
peptide
5
f2l peptide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!