The gastric glands synthesize glycoproteins whose oligosaccharides are linked to the peptide core mainly by the O-glycosidic bond, specifically removed by beta-elimination procedure. Our aim was to research the possibility of the existence of two subtypes of O-linked oligosaccharides with a different behavior to the removal procedure. The lectins from peanut (PNA) and Maackia amurensis (MAA-I) were histochemically used as markers of the O-linked oligosaccharides. Sections were also pretreated with beta-elimination and/or peptide N-Glycosidase F (PNGase-F) for the specific removal of O- and N-linked oligosaccharides, respectively. The lectin GNA, which mainly labels to N-linked oligosaccharides, was used to test the correct working of PNGase-F. To test the possibility that the beta-elimination treatment could remove the terminal sialic acid residues, the lectin LFA was used. The surface epithelium was negative to PNA, while it became strongly positive when beta-elimination was performed for 1 day. This staining was resistant to PNGase-F, suggesting that PNA was labeling to O-linked oligosaccharides. However, after beta-elimination for 5 days this staining is not observed. A similar pattern appeared with MAA-I. We propose the existence of two subtypes of O-linked oligosaccharides: labile and resistant. The labile O-linked oligosaccharides are removed with beta-elimination for 1 day, unmasking the PNA-positive oligosaccharides. These oligosaccharides are resistant O-linked oligosaccharides because staining is abolished with longer treatment of beta-elimination. The results with MAA-I also support this suggestion. In summary, the labile O-linked oligosaccharides are removed with short treatment, while the resistant O-linked oligosaccharides need a stronger procedure (for 5 days).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.20465 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!