Hair follicle stem cells: walking the maze.

Eur J Cell Biol

Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.

Published: July 2007

The discovery of epithelial stem cells (eSCs) in the bulge region of the outer root sheath of hair follicles in mice and man has encouraged research into utilizing the hair follicle as a therapeutic source of stem cells (SCs) for regenerative medicine, and has called attention to the hair follicle as a highly instructive model system for SC biology. Under physiological circumstances, bulge eSCs serve as cell pool for the cyclic regeneration of the anagen hair bulb, while they can also regenerate the sebaceous gland and the epidermis after injury. More recently, melanocyte SCs, nestin+, mesenchymal and additional, as yet ill-defined "stem cell" populations, have also been identified in or immediately adjacent to the hair follicle epithelium, including in the specialized hair follicle mesenchyme (connective tissue sheath), which is crucial to wound healing. Thus the hair follicle and its adjacent tissue environment contain unipotent, multipotent, and possibly even pluripotent SC populations of different developmental origin. It provides an ideal model system for the study of central issues in SC biology such as plasticity and SC niches, and for the identification of reliable, specific SC markers, which distinguish them from their immediate progeny (e.g. transient amplifying cells). The current review attempts to provide some guidance in this growing maze of hair follicle-associated SCs and their progeny, critically reviews potential or claimed hair follicle SC markers, highlights related differences between murine and human hair follicles, and defines major unanswered questions in this rapidly advancing field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2007.03.006DOI Listing

Publication Analysis

Top Keywords

hair follicle
28
stem cells
12
hair
11
hair follicles
8
model system
8
follicle
6
follicle stem
4
cells
4
cells walking
4
walking maze
4

Similar Publications

Gas-propelled anti-hair follicle aging microneedle patch for the treatment of androgenetic alopecia.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China. Electronic address:

Existing treatments for androgenetic alopecia (AGA) are unsatisfactory, owing to the two major reasons: (1) Oxidative stress and vascularization deficiency in the perifollicular environment provoke the premature senescence of hair follicles, limiting transformation from the telogen to the anagen phase; (2) The amount of drug delivered to the perifollicular region located in the deep dermis is very limited for passive drug delivery systems. Herein, we developed a gas-propelledmicroneedle patch integrated with ferrum-chelated puerarin/quercetin nanoparticles (PQFN) to increase drug accumulation in hair follicles and reshape the perifollicular environment for improved hair-regenerating effects. PQFN can rejuvenate testosterone (Tes)-induced senescence of dermal papilla cells by scavenging ROS, restoring mitochondrial function, regulating signaling pathways related to hair regeneration, and upregulating hair growth-promoting genes.

View Article and Find Full Text PDF

Effect of amniotic fluid on hair follicle growth.

J Dermatolog Treat

December 2025

Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey.

Human amniotic fluid stem cells (hAFSCs) have shown significant regenerative potential in treating hair loss, wound healing, and tissue repair. This study aims to evaluate the effects of human amniotic fluid (hAF) on hair follicle (HF) regeneration and immune system modulation. The hAF used was pooled, acellular, and gamma-irradiated to standardize its contents and enhance its stability.

View Article and Find Full Text PDF

Background: Rodent models have been widely used to investigate skin development, but do not account for significant differences in composition compared to human skin. On the other hand, two-dimensional and three-dimensional engineered skin models still lack the complex features of human skin such as appendages and pigmentation. Recently, hair follicle containing skin organoids (SKOs) with a stratified epidermis, and dermis layer have been generated as floating spheres from human-induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

Embryonic Mammary Gland Morphogenesis.

Adv Exp Med Biol

January 2025

Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.

Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma.

View Article and Find Full Text PDF

(-)-Epigallocatechin-3-gallate promotes the dermal papilla cell proliferation and migration through the induction of VEGFA.

Biochim Biophys Acta Mol Cell Res

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:

Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!