GT-2331 [(+)-1] is one of the most potent members of a class of chiral drug substances used to regulate the synthesis and release of histamine by the histamine H3 receptor, and as such, is an important biomarker for pharmaceutical companies conducting research in this field. In addition to overall structural features, the bioactivity of this molecule has also been found to be highly dependent on absolute stereochemistry, making the reliable assignment of this property a necessity. X-ray diffraction studies have provided conflicting data, leaving its three-dimensional structure uncertain. In view of this, its absolute configuration was investigated by vibrational circular dichroism. Results from this study provided independent assignment of this important molecule as the (1S,2S)-enantiomer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.20431DOI Listing

Publication Analysis

Top Keywords

absolute configuration
8
histamine receptor
8
vibrational circular
8
circular dichroism
8
investigation absolute
4
configuration potent
4
potent histamine
4
receptor antagonist
4
antagonist gt-2331
4
gt-2331 vibrational
4

Similar Publications

Crepidamycins A-E, pyranonaphthoquinones from endophytic Streptomyces sp. MG-F-1 of Dendrobium crepidatum by the co-culture strategy.

Phytochemistry

January 2025

Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

On the basis of the co-culture strategy, five previously undescribed S-bridged pyranonaphthoquinones, crepidamycins A-E (1-5) and five known analogues (6-10) were isolated from a medicinal plant endophytic Streptomyces sp. MG-F-1 in Dendrobium crepidatum with Bacillus cereus MG-1. The structures and absolute configurations of 1-5 were elucidated by the interpretation of data from detailed spectroscopic analysis and electronic circular dichroism spectra, together with consideration of the biogenetic origins.

View Article and Find Full Text PDF

Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.

View Article and Find Full Text PDF

Phytochemical investigation of the leaf extract of Roxb. ex Hornem led to the isolation and identification of two new highly oxygenated cyclohexenes, uvariagrandols A () and B (), together with seven known compounds (-). Their structures were elucidated by spectroscopic methods as well as comparisons made from the literature.

View Article and Find Full Text PDF

Asymmetric Synthesis, Structure Determination, and Biologic Evaluation of Isomers of TLAM as PFK1 Inhibitors.

ACS Med Chem Lett

January 2025

Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Inhibiting phosphofructokinase-1 (PFK1) is a promising approach for treating lactic acidosis and mitochondrial dysfunction by activating oxidative phosphorylation. Tryptolinamide (TLAM) has been shown as a PFK1 inhibitor, but its complex stereochemistry, with 16 possible isomers complicates further development. We conducted an asymmetric synthesis, determined the absolute configurations, and evaluated the PFK1 inhibitory activity of the TLAM isomers.

View Article and Find Full Text PDF

Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!