Careful consideration of motor impairments, such as those documented in autism, can afford valuable insights into the neurological basis of developmental disorders. Motor signs are highly quantifiable and reproducible and can serve as markers for deficits in parallel systems important for socialization and communication. Correlations of motor signs with anatomic MRI (aMRI) measures therefore offer an important means of investigating brain abnormalities contributing to autism. Prior aMRI studies have revealed increased cerebral volume in young children with autism, particularly in 'outer zone' radiate white matter; however functional correlates of these findings have not been reported. In this study, we examined whether radiate white matter within the primary motor cortex would predict impaired motor performance in children with autism. Subjects included children ages 8-12 years: 20 with autism, 36 typically developing (TD) controls and 20 clinical controls with attention-deficit/hyperactivity disorder (ADHD). Regional tissue volumes were measured using an automated tissue classification algorithm followed by a semi-automated parcellation method. Motor performance was assessed using the Physical and Neurologic Examination of Subtle Signs (PANESS), with higher scores indicating poorer performance. Independent linear regression analyses revealed that for TD controls there was a significant negative correlation between total PANESS score and primary motor cortex white matter volume in both the right and left hemispheres, such that increased white matter volume predicted improved motor skill. In contrast, children with autism showed a robust positive correlation between total PANESS score and left hemisphere primary motor and premotor white matter volumes, such that increased white matter volume predicted poorer motor skill. No significant correlations were found for ADHD. Multivariate regression analyses revealed that the correlation between PANESS score and left motor cortex white matter volume in children with autism significantly differed from those in both ADHD and TD children. The correlation in ADHD did not significantly differ from that in TD children. The findings for the first time demonstrate an association between increasing radiate white matter volume and functional impairment in children with autism, in this case basic motor skill impairment. The observed association, which appears specific to autism, may be representative of global patterns of brain abnormality that not only contribute to motor dysfunction in autism, but also deficits in socialization and communication that define the disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/awm129 | DOI Listing |
Acad Radiol
January 2025
Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan (T.W.L., C.H.W.); Center of Minimal-Invasive Interventional Radiology, National Taiwan University Hospital, Taipei, Taiwan (C.H.W.); Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan (C.H.W.). Electronic address:
Rationale And Objectives: Individuals with autosomal dominant polycystic kidney disease (ADPKD) can present with diverse renal and extra-renal manifestations. Large vessel anomalies, such as cerebral aneurysms, are potentially fatal extra-renal manifestations. However, limited research has been conducted on cerebral small vessel disease (CSVD).
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Radiology (P.C.F., A.P.S., J.J.Y.).
Background And Purpose: There is surging interest in the therapeutic potential of psychedelic compounds like psilocybin in the treatment of psychiatric illnesses like major depressive disorder (MDD). Recent studies point to the rapid antidepressant effect of psilocybin; however, the biological mechanisms underlying these differences remain unknown. This study determines the feasibility of using diffusion MRI to characterize and define the potential spatiotemporal microstructural differences in the brain following psilocybin treatment in C57BL/6J male mice.
View Article and Find Full Text PDFRinsho Shinkeigaku
January 2025
Department of Neurology, Gifu Prefectural General Medical Center.
A 49-year-old female presented with the primary complaint of hand tremors. Neurological examination on admission revealed signs of cognitive impairment, bulbar palsy, dystonia, cerebellar ataxia, and pyramidal tract disease. T-weighted brain MRI revealed hyperintense signals in the subcortical white matter, basal ganglia, and cerebellar dentate nucleus, with no atrophy of the brainstem or corpus callosum.
View Article and Find Full Text PDFFortschr Neurol Psychiatr
January 2025
Klinik und Poliklinik für Psychiatrie und Psychotherapie, University Hospital Carl Gustav Carus, Dresden, Germany.
To investigate the diagnostic value of the MTA score according to age, cerebral small vessel disease and in times of automated volumetry. Retrospective analysis of patients with subjective cognitive decline (SCD), amnestic mild cognitive impairment (aMCI), Alzheimer's disease (AD) and mixed dementia (MD) who presented to our outpatient dementia clinic between February 2018 and October 2020. Patients underwent cranial magnetic resonance imaging (MRI) including specific MRI sequences needed for automated volumetry.
View Article and Find Full Text PDFSleep Med
January 2025
Department of Neurology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China. Electronic address:
Objective: This study examined the relationship between diffusion tensor imaging indicators and brain network characteristics in patients with cerebral small vessel disease (CSVD) with (CSVD + S) and without (CSVD-S) sleep disturbance. We explored the feasibility of using these imaging biomarkers to investigate the pathophysiological mechanisms underlying sleep disturbance in patients with CSVD.
Methods: A total of 146 patients with CSVD and 84 healthy controls were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!