Antagonists of myosin light chain (MLC) kinase (MLCK) and Rho kinase (ROK) are thought to inhibit hypoxic pulmonary vasoconstriction (HPV) by decreasing the concentration of phosphorylated MLC at any intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMC); however, these antagonists can also decrease [Ca(2+)](i). To determine whether MLCK and ROK antagonists alter Ca(2+) signaling in HPV, we measured the effects of ML-9, ML-7, Y-27632, and HA-1077 on [Ca(2+)](i), Ca(2+) entry, and Ca(2+) release in rat distal PASMC exposed to hypoxia or depolarizing concentrations of KCl. We performed parallel experiments in isolated rat lungs to confirm the inhibitory effects of these agents on pulmonary vasoconstriction. Our results demonstrate that MLCK and ROK antagonists caused concentration-dependent inhibition of hypoxia-induced increases in [Ca(2+)](i) in PASMC and HPV in isolated lungs and suggest that this inhibition was due to blockade of Ca(2+) release from the sarcoplasmic reticulum and Ca(2+) entry through store- and voltage-operated Ca(2+) channels in PASMC. Thus MLCK and ROK antagonists might block HPV by inhibiting Ca(2+) signaling, as well as the actin-myosin interaction, in PASMC. If effects on Ca(2+) signaling were due to decreased phosphorylated myosin light chain concentration, their diversity suggests that MLCK and ROK antagonists may have acted by inhibiting myosin motors and/or altering the cytoskeleton in a manner that prevented achievement of required spatial relationships among the cellular components of the response.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00141.2007DOI Listing

Publication Analysis

Top Keywords

ca2+ signaling
16
mlck rok
16
rok antagonists
16
pulmonary vasoconstriction
12
myosin light
12
light chain
12
ca2+
10
hypoxic pulmonary
8
rho kinase
8
ca2+ entry
8

Similar Publications

The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.

Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.

View Article and Find Full Text PDF

Metal ions are significant ligands that bind to proteins and play crucial roles in cell metabolism, material transport, and signal transduction. Predicting the protein-metal ion ligand binding residues (PMILBRs) accurately is a challenging task in theoretical calculations. In this study, the authors employed fused amino acids and their derived information as feature parameters to predict PMILBRs using three classical machine learning algorithms, yielding favourable prediction results.

View Article and Find Full Text PDF

Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.

Life Metab

February 2025

New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.

Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!