A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Divergent effects of prostaglandin receptor signaling on neuronal survival. | LitMetric

Induction of cyclooxygenase-2 (COX-2) with production of prostaglandins occurs in a wide spectrum of acute and chronic neurodegenerative diseases and is associated with neuronal death. Inhibition of the COX-2 pathway and downstream production of prostaglandins protect neurons in rodent models of cerebral ischemia and neurodegeneration. Recent studies investigating the functions of selected prostaglandin receptor pathways in mediating COX-2 neurotoxicity have demonstrated both toxic and paradoxically neuroprotective effects of several receptors in models of excitotoxicity. In this study, we investigate the functions of additional prostaglandin receptors not previously characterized in organotypic models of glutamate excitotoxicity. We find that PGD(2), PGI(2), and PGF(2alpha) receptors protect motor neurons in an organotypic spinal cord model of amyotrophic lateral sclerosis (ALS). In addition, PGI(2) and TXA(2) receptors rescue CA1 neurons in an organotypic hippocampal model of N-methyl-d-aspartate excitotoxicity. However, in a model of inflammation induced by lipopolysaccharide, prostaglandin receptors previously found to be protective in excitotoxicity now cause CA1 neuronal death. Taken together, these studies identify novel eicosanoid receptor signaling pathways that mediate neuronal protection in excitotoxic paradigms; these data also support the emerging hypothesis that the toxic/protective effects of eicosanoid signaling on neuronal viability diverge significantly depending on whether excitotoxicity or inflammation predominates as the underlying toxic stimulus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680717PMC
http://dx.doi.org/10.1016/j.neulet.2007.05.055DOI Listing

Publication Analysis

Top Keywords

prostaglandin receptor
8
receptor signaling
8
signaling neuronal
8
production prostaglandins
8
neuronal death
8
prostaglandin receptors
8
neurons organotypic
8
neuronal
5
receptors
5
excitotoxicity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!