A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. | LitMetric

Linear regression modeling on a database of HIV-1 genotypes and phenotypes was applied to predict the HIV-1 resistance phenotype from the viral genotype. In this approach, the phenotypic measurement is estimated as the weighted sum of the effects of individual mutations. Higher order interaction terms (mutation pairs) were included to account for synergistic and antagonistic effects between mutations. The most significant mutations and interactions identified by the linear regression models for 17 approved antiretroviral drugs are reported. Although linear regression modeling is a statistical data-driven technique focused on obtaining the best possible prediction, many of these mutations are also known resistance-associated mutations, indicating that the statistical models largely reflect well characterized biological phenomena. The performance of the models in predicting in vitro susceptibility phenotype and virologic response in treated patients is described. In addition to a high concordance with in vitro measured fold change, which was the primary aim of model design, the models per drug show good predictivity of therapy response for regimens including that drug, even in the absence of other clinically relevant factors such as background regimen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2007.05.009DOI Listing

Publication Analysis

Top Keywords

linear regression
16
regression modeling
12
susceptibility phenotype
8
phenotype viral
8
viral genotype
8
mutations
5
prediction hiv-1
4
hiv-1 drug
4
drug susceptibility
4
linear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!