Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Linear regression modeling on a database of HIV-1 genotypes and phenotypes was applied to predict the HIV-1 resistance phenotype from the viral genotype. In this approach, the phenotypic measurement is estimated as the weighted sum of the effects of individual mutations. Higher order interaction terms (mutation pairs) were included to account for synergistic and antagonistic effects between mutations. The most significant mutations and interactions identified by the linear regression models for 17 approved antiretroviral drugs are reported. Although linear regression modeling is a statistical data-driven technique focused on obtaining the best possible prediction, many of these mutations are also known resistance-associated mutations, indicating that the statistical models largely reflect well characterized biological phenomena. The performance of the models in predicting in vitro susceptibility phenotype and virologic response in treated patients is described. In addition to a high concordance with in vitro measured fold change, which was the primary aim of model design, the models per drug show good predictivity of therapy response for regimens including that drug, even in the absence of other clinically relevant factors such as background regimen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2007.05.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!