Previous studies have differed in expectations about whether long limbs should increase or decrease the energetic cost of locomotion. It has recently been shown that relatively longer lower limbs (relative to body mass) reduce the energetic cost of human walking. Here we report on whether a relationship exists between limb length and cost of human running. Subjects whose measured lower-limb lengths were relatively long or short for their mass (as judged by deviations from predicted values based on a regression of lower-limb length on body mass) were selected. Eighteen human subjects rested in a seated position and ran on a treadmill at 2.68 ms(-1) while their expired gases were collected and analyzed; stride length was determined from videotapes. We found significant negative relationships between relative lower-limb length and two measures of cost. The partial correlation between net cost of transport and lower-limb length controlling for body mass was r=-0.69 (p=0.002). The partial correlation between the gross cost of locomotion at 2.68 ms(-1) and lower-limb length controlling for body mass was r=-0.61 (p=0.009). Thus, subjects with relatively longer lower limbs tend to have lower locomotor costs than those with relatively shorter lower limbs, similar to the results found for human walking. Contrary to general expectation, a linear relationship between stride length and lower-limb length was not found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhevol.2007.04.001 | DOI Listing |
J Clin Orthop Trauma
February 2025
Orthopaedic and Trauma Surgery Department, Hospital de Alta Complejidad Cuenca Alta, RP6 Km 92.5 PC 1814, Cañuelas, Buenos Aires, Argentina.
Introduction: Aseptic recalcitrant nonunion (ARNU) of the femur and tibia is an entity in which the absence of bony union, misalignment, and limb length discrepancies (LLD) coexist. Currently, the management of these cases lacks consensus. This study aimed to describe the bone union rate and deformity correction outcomes in patients with ARNU of the femur or tibia treated with the Induced Membrane Technique (IMT).
View Article and Find Full Text PDFOpen Access J Sports Med
January 2025
Prodia Clinical Laboratory, Jakarta, Indonesia.
Background: Sarcopenia is characterized by the progressive loss of skeletal muscle mass and poses a significant health challenge for older adults by increasing the risk of disability and decreasing quality of life. Yoga considers as a low-risk and beneficial exercise for older adults. This research aims to evaluate the potential of yoga practice as a preventive strategy against sarcopenia in Indonesian older adults.
View Article and Find Full Text PDFSci Rep
January 2025
The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
Millions of individuals surviving a stroke have lifelong gait impairments that reduce their personal independence and quality of life. Reduced walking speed is one of the major problems limiting community mobility and reintegration. Previous studies have shown positive effect of robot-assisted gait training utilizing hip exoskeletons for individuals with gait impairments due to a stroke, leading to increased walking speed in post-treatment compared to pre-treatment assessments.
View Article and Find Full Text PDFJBJS Rev
January 2025
Department of Orthopaedic Surgery, University of California Davis, Sacramento, California.
» Patients with diabetes mellitus (DM) undergoing shoulder arthroplasty (SA) have a unique risk profile, which must be considered by clinicians.» The presence of DM as a comorbidity is associated with longer length of stay following SA, greater likelihood of nonhome discharge, and a higher rate of 90-day readmission.» Though the incidence is low, patients with DM are at an increased risk of serious postoperative cardiovascular complications, such as pulmonary embolism, venous thromboembolism, and myocardial infarction.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Sport Sciences, Waseda University, Saitama, Japan.
Walking patterns can differ between children and adults, both kinematically and kinetically. However, the detailed nature of the ankle pattern has not been clarified. We investigated musculature, biomechanics, and muscle activation strategies and their relevance to walking performance in preschool (PS) and school children (SC), with adults (AD) as reference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!