Photodarkening of Yb-doped aluminosilicate fibers by continuous wave 488 nm irradiation was investigated. The irradiation induced significant excess loss in the UV-visible spectroscopy (VIS) region in Yb-doped aluminosilicate fibers while pure aluminosilicate fibers showed negligible induced loss. Ultraviolet-VIS-near-infrared spectroscopy revealed an absorption peak at 220 nm in unexposed Yb-doped aluminosilicate fiber preforms. The observed peak was attributed to Yb-associated oxygen deficiency centers (ODCs) and proposed as a precursor of the photodarkening. The proposed model was supported by measurements on oxygen-loaded Yb-doped aluminosilicate fibers. In these, the photodarkening could be significantly reduced, which we attribute to a smaller number of ODCs following oxygen loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.32.001626 | DOI Listing |
The first observation of cooling by anti-Stokes pumping in nanoparticle-doped silica fibers is reported. Four Yb-doped fibers fabricated using conventional modified chemical vapor deposition (MCVD) techniques were evaluated, namely, an aluminosilicate fiber and three fibers in which the Yb ions were encapsulated in CaF, SrF, or BaF nanoparticles. The nanoparticles, which oxidize during preform processing, provide a modified chemical environment for the Yb ions that is beneficial to cooling.
View Article and Find Full Text PDFInvestigation of photodarkening (PD) in Yb-doped fibers tandem-pumped at 1018 nm is reported. For a homemade Yb-doped aluminosilicate double-clad fiber (YADF), the transmitted power of a 633 nm probe beam is reduced by 2.4% over 2 hours for the tandem pumping configuration at 1018 nm, which is significantly smaller than 33.
View Article and Find Full Text PDFA novel random laser, integrating a passive optical fiber with a phase separated aluminosilicate core-silica cladding as the feedback medium, is proposed and presented. The core exhibits greatly enhanced Rayleigh scattering, therefore requiring a significantly reduced length of scattering fiber (4 m) for lasing. With a Yb-doped fiber as the gain medium, the fiber laser operates at 1050 nm with low threshold power and possesses an output that can be amplified through conventional means.
View Article and Find Full Text PDFA newly designed all-solid step-index Yb-doped aluminosilicate large mode area fiber for achieving high peak power at near diffraction limited beam quality with local adiabatic tapering is presented. The 45µm diameter fiber core and pump cladding consist of active/passively doped aluminosilicate glass produced by powder sinter technology (REPUSIL). A deliberate combination of innovative cladding and core materials was aspired to achieve low processing temperature reducing dopant diffusion during fiber fabrication, tapering and splicing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!