AI Article Synopsis

Article Abstract

The placental trophoblast at different stages of pregnancy contains some drug transporters and xenobiotic-metabolising enzymes, as well as ligand-activated nuclear receptors, which control their inducible transcriptional regulation. Glucocorticoid receptor alpha (GRalpha) is expressed in both placental syncytiotrophoblast and cytotrophoblast. GRalpha was shown to control inducible expression of several enzymes of the cytochrome P-450 family (CYP) and the drug transporter P-glycoprotein in the liver. However, GRalpha-mediated transcriptional regulation of drug transporters and CYPs has not been studied in the placental trophoblast. In this study, we examined the expression and activity of GRalpha in the transcriptional regulation of P-glycoprotein, CYP3A4, and CYP2C9 in placental trophoblast cell lines. Employing RT-PCR, Western blotting, and luciferase gene reporter assay, we detected the expression and activity of GRalpha in JEG3 and BeWo cell lines. However, we observed that only MDR1 mRNA was up-regulated after treatment of placental cells with dexamethasone. Accordingly, only the promoter of the MDR1 gene was activated by dexamethasone in gene reporter assays in placental cells and the activation was abolished by RU486, an antagonist of GRalpha. CYP3A4 and CYP2C9 promoters were activated in placental cells only after co-transfection with hepatocyte nuclear factor 4alpha (HNF4alpha), which indicates the hepatocyte-specific character of GRalpha-mediated regulation of the genes. On the other hand, coexpression of HNF4alpha had no effect on the activation of the MDR1 gene promoter, suggesting HNF4alpha-independent regulation via GRalpha. We conclude that GRalpha may be involved in the transcriptional regulation of P-glycoprotein in the placental trophoblast. We also indicate that the CYP3A4 and CYP2C9 genes are not inducible through GRalpha in placental cell lines, due to the lack of HNF4alpha expression and possibly some additional hepatocyte-specific transcriptional factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.placenta.2007.05.001DOI Listing

Publication Analysis

Top Keywords

transcriptional regulation
20
placental trophoblast
20
cyp3a4 cyp2c9
16
cell lines
16
regulation p-glycoprotein
12
placental cells
12
placental
10
glucocorticoid receptor
8
p-glycoprotein cyp3a4
8
cyp2c9 genes
8

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects.

Cell Mol Life Sci

January 2025

Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.

View Article and Find Full Text PDF

This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package.

View Article and Find Full Text PDF

Using Zebrafish Models to Study Epitranscriptomic Regulation of CNS Functions.

J Neurochem

January 2025

Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.

Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders.

View Article and Find Full Text PDF

Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!