We studied the effect of five bedding materials (wood shavings, sawdust, peanut hulls, wheat straw and shredded paper) and PLTtrade mark (a commercial formulation of Na bisulfate) in factorial combinations, on NH(3) emissions from broiler manure. Treatments were incubated for 11 days at 25 degrees C and 98% relative humidity. Ammonia was trapped in 0.1N H(2)SO(4) and measured colorimetrically as NH(4)(+), and CO(2) was monitored with an infrared analyzer. Ammonia and CO(2) emissions were suppressed by PLT throughout the study. Wheat straw, wood shavings, and sawdust, with C(total)/N(total)>50 or C(biodegradable)/N>20, had low NH(3) emissions. Total NH(3) emissions from peanut hulls and shredded paper were the highest, probably due to peanut hulls' low C/N ratio and shredded paper's alkaline pH. No significant interactions on NH(3) emissions were detected between PLT and bedding materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2007.03.057 | DOI Listing |
Environ Sci Technol
January 2025
Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, United States.
Industrialized swine facilities adversely affect the health and well-being of Eastern North Carolina residents in the U.S. and are an issue of environmental racism.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Hubei Three Gorges Laboratory, Yichang 443000, China.
With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!