The synthetic tellurium compound, AS101, is a novel inhibitor of IL-1beta converting enzyme.

J Interferon Cytokine Res

C.A.I.R. Institute, The Safdié AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.

Published: June 2007

The organotellurium compound, trichloro(dioxoethylene-O,O') tellurate (AS101) has been shown previously to exert diverse biologic activities both in vitro and in vivo. This compound was recently found to react with thiols and to catalyze their oxidation. This property of AS101 raises the possibility that it may serve as a cysteine protease inhibitor. In the present study, using a substrate-specific enzymatic assay, we show that treatment of caspase-1 (interleukin-1beta [IL-1beta] converting enzyme [ICE]) with AS101 inhibits its enzymatic activity in a dose-dependent manner. Moreover, the results show that AS101 treatment causes a significant reduction in the active form of IL-18 and IL-1beta in peripheral blood mononuclear cells (PBMC) and in human HaCat keratinocytes. We further demonstrate that the inhibitory effect of AS101 does not involve nitric oxide (NO) or interferon-gamma (IFN-gamma), two possible regulators of IL-18 production, and does not occur at the mRNA level, suggesting a posttranscriptional mechanism of action. More importantly, AS101 downregulates IL-18 and IL-1beta serum levels in a mouse model of lipopolysaccharide (LPS)-induced sepsis, resulting in increased survival. Recent studies emphasize the pathophysiologic role of IL-18 and IL-1beta in a variety of inflammatory diseases. Thus, their blockage by the nontoxic compound, AS101, currently used in clinical studies, may provide clinical advantage in the treatment of these diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jir.2007.0168DOI Listing

Publication Analysis

Top Keywords

il-18 il-1beta
12
as101
8
compound as101
8
converting enzyme
8
synthetic tellurium
4
compound
4
tellurium compound
4
as101 novel
4
novel inhibitor
4
il-1beta
4

Similar Publications

α-amanitin induces hepatotoxicity via PPAR-γ inhibition and NLRP3 inflammasome activation.

Ecotoxicol Environ Saf

January 2025

Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China. Electronic address:

Mushroom poisoning, predominantly caused by α-amanitin, is a critical food safety concern in worldwide, with severe cases leading to hepatotoxicity and fatalities. This study delves into the hepatotoxic effects of α-amanitin, focusing on the NLRP3 inflammasome and PPAR-γ's regulatory role in inflammation. In vitro studies with L-02 cells showed that α-amanitin reduces cell viability and triggers NLRP3 inflammasome activation, increasing NF-κB phosphorylation and pro-inflammatory cytokines IL-18 and IL-1β.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.

View Article and Find Full Text PDF

IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury.

Biomolecules

December 2024

Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan.

The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18.

View Article and Find Full Text PDF

The prevalence of osteoarthritis (OA) notably surges with age and weight gain. The most common clinical therapeutic drugs are painkillers, yet they cannot impede the deteriorating course of OA. Thus, understanding OA's pathogenesis and devising effective therapies is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!