[Study on the chemical constituents of flavones from corn silk].

Zhong Yao Cai

School of Food Science and Technology, Southern Yangtze University, Wuxi 214036, China.

Published: February 2007

The three flavones were isolated from water extracts of corn silk by chromatography on macroporous resin, polyamide, ODS and Sephadex LH-20. Three compounds were identified as formononetin (7-hydroxy-4'-methoxyisoflavone) ( I ) ,2"-O-alpha-L-rham-nosyl-6-C-( 3-deoxyglucosyl) -3 '-methoxyluteolin( II ) ,2"-O-alpha-L-rhamnosyl-6-C-( 6-deoxy-ax-5-methyl-xylo-hexos-4-ulosyl) -3'-methoxyluteolin( II ). Compounds ( I ) and ( II ) were isolated from the corn silk for the first time.

Download full-text PDF

Source

Publication Analysis

Top Keywords

corn silk
8
[study chemical
4
chemical constituents
4
constituents flavones
4
flavones corn
4
corn silk]
4
silk] three
4
three flavones
4
flavones isolated
4
isolated water
4

Similar Publications

Background: Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle.

View Article and Find Full Text PDF

Genome-wide identification and functional roles relating to anthocyanin biosynthesis analysis in maize.

BMC Plant Biol

January 2025

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.

Background: Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood.

View Article and Find Full Text PDF

Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.

View Article and Find Full Text PDF

Developing simple and efficient multi-gene expression systems is crucial for multi-trait improvement or bioproduction in transgenic plants. In previous research, an -based bicistronic system from the nonpathogenic fungus efficiently expressed multiple enzyme proteins in yeast and maize, and the heterologous enzymes successfully performed their catalytic activity to reconstruct the biosynthetic pathway in the host organism. Unlike enzyme proteins, some heterologous functional proteins (such as insecticidal proteins) are dose-dependent and they need to express sufficient levels to perform their biological functions.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!