Application of the biotic ligand model to explain potassium interaction with thallium uptake and toxicity to plankton.

Environ Toxicol Chem

Department of Biology/Clarkson Center for the Environment, Clarkson University, Potsdam, New York 13699, USA.

Published: June 2007

Competitive interaction between TI(I) and K was successfully predicted by the biotic ligand model (BLM) for the microalga Chlorella sp. (Chlorophyta; University of Toronto Culture Collection strain 522) during 96-h toxicity tests. Because of a greater affinity of T1(I) (log K = 7.3-7.4) as compared to K (log K = 5.3-6.3) for biologically sensitive sites, an excess of 40- to 160-fold of K is required to suppress T1(I) toxic effects on Chlorella sp., regardless of [T1(I)] in solution. Similar excess of K is required to suppress T1(I) toxicity to Synechococcus leopoliensis (Cyanobacteria; University of Texas Culture Collection strain 625) and Brachionus calyciflorus (Rotifera; strain AB-RIF). The mechanism for the mitigating effect of K on T1(I) toxicity was investigated by measuring 204T1(I) cellular uptake flux and efflux in Chlorella sp. Potassium shows a competitive effect on T1(I) uptake fluxes that could be modeled using the BLM-derived stability constants and a Michaelis-Menten relationship. A strong T1 efflux dependent only on the cellular T1 concentration was measured. Although T1 efflux does not explain the effect of K on T1(I) toxicity and uptake, it is responsible for a high turnover of the cellular T1 pool (intracellular half-life = 12-13.5 min). No effect of Na+, Mg2+, or Ca2+ was observed on T1+ uptake, whereas the absence of trace metals (Cu, Co, Mo, Mn, Fe, and Zn) significantly increased T1 uptake and decreased the mitigating effect of K+. The importance of K+ in determining the aquatic toxicity of T1+ underscores the use of ambient K+ concentration in the establishment of T1 water-quality guidelines and the need to consider K in predicting biogeochemical fates of T1 in the aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1897/06-315r.1DOI Listing

Publication Analysis

Top Keywords

t1i toxicity
12
biotic ligand
8
ligand model
8
culture collection
8
collection strain
8
required suppress
8
suppress t1i
8
uptake
6
toxicity
6
t1i
6

Similar Publications

Competitive interaction between TI(I) and K was successfully predicted by the biotic ligand model (BLM) for the microalga Chlorella sp. (Chlorophyta; University of Toronto Culture Collection strain 522) during 96-h toxicity tests. Because of a greater affinity of T1(I) (log K = 7.

View Article and Find Full Text PDF

Conservative treatment for carcinoma of the anus has become the standard care for this malignancy. In this study we report on our experience with this method with particular emphasis on treatment outcome and acute toxicity. Between April 1991 and February 2002, 35 patients (male/female ratio 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!