Background: Accurate prediction of intra-protein residue contacts from sequence information will allow the prediction of protein structures. Basic predictions of such specific contacts can be further refined by jointly analyzing predicted contacts, and by adding information on the relative positions of contacts in the protein primary sequence.
Results: We introduce a method for graph analysis refinement of intra-protein contacts, termed GARP. Our previously presented intra-contact prediction method by means of pair-to-pair substitution matrix (P2PConPred) was used to test the GARP method. In our approach, the top contact predictions obtained by a basic prediction method were used as edges to create a weighted graph. The edges were scored by a mutual clustering coefficient that identifies highly connected graph regions, and by the density of edges between the sequence regions of the edge nodes. A test set of 57 proteins with known structures was used to determine contacts. GARP improves the accuracy of the P2PConPred basic prediction method in whole proteins from 12% to 18%.
Conclusion: Using a simple approach we increased the contact prediction accuracy of a basic method by 1.5 times. Our graph approach is simple to implement, can be used with various basic prediction methods, and can provide input for further downstream analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892094 | PMC |
http://dx.doi.org/10.1186/1471-2105-8-S5-S6 | DOI Listing |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Ann Surg Oncol
January 2025
Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.
Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.
Ann Surg Oncol
January 2025
Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
Background: Tumor size (TS) in pancreatic ductal adenocarcinoma (PDAC) is one of the most important prognostic factors. However, discrepancies between TS on preoperative images (TSi) and pathological specimens (TSp) have been reported. This study aims to evaluate the factors associated with the differences between TSi and TSp.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Ave, Columbus, OH, 43210, USA.
Humans can learn to attentionally suppress salient, irrelevant information when it consistently appears at a predictable location. While this ability confers behavioral benefits by reducing distraction, the full scope of its utility is unknown. As people locomote and/or shift between task contexts, known-to-be-irrelevant locations may change from moment to moment.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.
Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!