Background And Objective: Tramadol is metabolized by the highly polymorphic enzyme cytochrome P450 (CYP)2D6. Patients with different CYP2D6 genotypes may respond differently to tramadol in terms of pain relief and adverse events. In this study, we compare the pharmacokinetics and effects of tramadol in Malaysian patients with different genotypes to establish the pharmacokinetic-pharmacodynamic relationship of tramadol.
Study Design And Setting: All patients received an intravenous dose of tramadol 100mg as their first postoperative analgesic. Blood was sampled at 0 minutes and subsequently at 15 and 30 minutes, 1, 2, 4, 8, 16, 20, and 24 hours for serum tramadol and analyzed by high-performance liquid chromatography (HPLC). Patients were genotyped for CYP2D6*1, *3, *4, *5, *9, *10, and *17 alleles and duplication of the gene by means of an allele-specific PCR. Pain was measured using the Visual Analog Scales, and adverse effects were recorded.
Results: About half of the patients had the wild-type allele (CYP2D6*1), with the 'Asian'CYP2D6*10 allele accounting for most of the rest (40%). None of the genotypes predicted poor metabolism. Twenty-seven percent of the patients were intermediate metabolizers (IM) and 2.9% were ultra-rapid (UM) metabolizers; the remaining 70% were extensive metabolizers (EM). The mean total clearance (CL) predicted by the model was lower (19 L/h) and the half-life longer (5.9 hours) than those reported in Western populations. This may due to the high frequency of the CYP2D6*10 allele amongst Malaysian patients. The UM and EM groups had 2.6- and 1.3-times faster CL, respectively, than the IM. CL was 16, 18, 23, and 42 L/h while mean half-lives were 7.1, 6.8, 5.6, and 3.8 hours among the IM, EM1, EM2, and UM groups, respectively. However, the analgesic effects of tramadol were not measured adequately among the postoperative patients to establish its full therapeutic effects. There were significant differences in the adverse-effect profiles amongst the various genotype groups, with the IM group experiencing more adverse effects than the EM, and the EM having more adverse effects than the UM.
Conclusion: CYP2D6 activity may play an important role in determining the pharmacokinetics of tramadol and in predicting its adverse effects. If these results can be confirmed in a larger population, genotyping may be an important tool in determining the dose of tramadol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF03256239 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
: several adverse effects of ozone (O) and nitrogen dioxide (NO) are assessed using combined oxidant capacity (O) and redox-weighted oxidant capacity (Owtx) as surrogates. However, the associations of oxidant capacity (O and Owtx) with platelet-based inflammatory indicators and the potential modifying role of physical activity (PA) remain unclear. : 31 318 participants were selected from the baseline survey of the Henan Rural Cohort Study.
View Article and Find Full Text PDFCancer J
January 2025
From the Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA.
Purpose: Chemoradiation-induced lymphopenia is common and associated with poorer survival in multiple solid malignancies. However, the association between chemoradiation-related lymphopenia and survival outcomes in rectal cancer is yet unclear. The objective of this study was to evaluate the prognostic impact of lymphopenia and its predictors in patients with rectal cancer undergoing neoadjuvant chemoradiation.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.
Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA.
Pregnancy is a vulnerable time with significant cardiovascular changes that can lead to adverse outcomes, which can extend into the postpartum window. Exposure to emissions from electronic cigarettes (Ecig), commonly known as "vaping," has an adverse impact on cardiovascular function during pregnancy and post-natal life of offspring, but the postpartum effects on maternal health are poorly understood. We used a Sprague Dawley rat model, where pregnant dams are exposed to Ecigs between gestational day (GD)2-GD21 to examine postpartum consequences.
View Article and Find Full Text PDFMed Oncol
January 2025
Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
This study presents nanostructured lipid carrier (NLC) co-loaded with Docetaxel (DCT) and 5-Fluorouracil (5-FU) as a targeted therapeutic approach for gastric cancer (GC). Using nanoprecipitation, NLC-DCT/5-FU were synthesized and exhibited an average particle size of 215.3 ± 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!