AI Article Synopsis

  • Human melanoma is the fastest growing cancer in the US, with ongoing debate about the role of UV radiation in its development.
  • The article examines UV exposure's connection to melanoma through different models and highlights key genetic changes that may lead to cancer, including p16(INK4a) deletions, MC1R, RAS, and BRAF mutations.
  • It also emphasizes the importance of the BRAF mutation and its relevance compared to RAS mutations in the context of melanoma progression.

Article Abstract

Human melanoma represents the fastest growing malignancy in the US. The etiology of melanoma is highly debated as is the role of ultraviolet (UV) radiation in the initiation and progression of melanoma. This article discusses data from UV exposure and its relationship to the development of melanoma from various models of melanoma as well as various genetic alterations seen in oncogenic transformation of melanocytes. Genetic alterations such as the p16(INK4a) deletion, melanocortin 1 receptor (MC1R), RAS, and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) may be indicative of a predisposition to melanoma development. Historical research as well as current data on the significance of the hot spot mutation in BRAF is discussed in its relative potential to the activating mutation in RAS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.20353DOI Listing

Publication Analysis

Top Keywords

genetic alterations
8
melanoma
7
models mechanisms
4
mechanisms malignant
4
malignant melanoma
4
melanoma human
4
human melanoma
4
melanoma represents
4
represents fastest
4
fastest growing
4

Similar Publications

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

Site-selective photo-crosslinking for the characterisation of transient ubiquitin-like protein-protein interactions.

PLoS One

January 2025

Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!