Ryanodane diterpenes, named 14-O-methyl-ryanodanol and ryanodanol, were isolated from ripe fruit of Erythroxylum passerinum. Compound 2 was also found in the leaves of this species, while 1 was obtained from the leaves of E. nummularia. Compound 1 showed insecticidal activity against Aedes aegypti larvae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2007.05.007 | DOI Listing |
Angew Chem Int Ed Engl
October 2024
Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
Ryanodane diterpenes are structurally complex natural products that are well-known for their high degree of oxidation and the challenges associated with synthesizing them within the terpene class. Herein, we present a two-stage synthetic strategy that draws inspiration from the broad biosynthesis of terpenes, allowing us to achieve the first chemical synthesis of garajonone, a ryanodane diterpenoid that occurs naturally at low abundance, as well as its epimer, 3-epi-garajonone. The key to this success lies in the rapid construction of the carbon framework of the target molecule by employing an early-stage palladium-catalyzed Heck/carbonylative esterification cascade annulation, followed by successive late-stage selective redox manipulation to establish the desired oxidation state of the molecule.
View Article and Find Full Text PDFJ Agric Food Chem
March 2022
Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
Isoryanodane and ryanodane diterpenes have a carbon skeleton correlation in structures, and their natural product-oxidized diterpenes show antifeedant and insecticidal activities against Hemiptera and Lepidoptera. While ryanodine mainly acts on the ryanodine receptor (RyR), isoryanodane does not. In this study, we demonstrated that itol A, an isoryanodane diterpenoid, could significantly downregulate the expression level of juvenile hormone-binding protein (JHBP), which plays a vital role in JH transport.
View Article and Find Full Text PDFAcc Chem Res
March 2021
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Phytochemistry
August 2020
Instituto de Ciencias Agrarias, CSIC, Serrano 115-dpdo, 28006, Madrid, Spain. Electronic address:
This work presents the study of the roots of the Macaronesian paleoendemism Persea indica (L.) Spreng. The root biomass of this protected tree species has been produced by soil-less aeroponic culture under controlled environment.
View Article and Find Full Text PDFNature
September 2019
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
(+)-Perseanol is an isoryanodane diterpene that is isolated from the tropical shrub Persea indica and has potent antifeedant and insecticidal properties. It is structurally related to (+)-ryanodine, which is a high-affinity ligand for and modulator of ryanodine receptors-ligand-gated ion channels that are critical for intracellular Ca signalling in most multicellular organisms. Ryanodine itself modulates ryanodine-receptor-dependent Ca release in many organisms, including mammals; however, preliminary data indicate that ryanodane and isoryanodane congeners that lack the pyrrole-2-carboxylate ester-such as perseanol-may have selective activity in insects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!