Functional analysis of the PP2A subfamily of protein phosphatases in regulating Drosophila S6 kinase.

Exp Cell Res

Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9041, USA.

Published: August 2007

Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment. Knockdown of the PP2A catalytic subunit increased basal dS6K phosphorylation and inhibited dephosphorylation induced by amino acid withdrawal. In contrast, depletion of the catalytic subunits of the other two members of the subfamily did not enhance dS6K phosphorylation. Knockdown of PP4 caused a 20% decrease in dS6K phosphorylation and knockdown of PP6 had no effect. Knockdown of the Drosophila B56-2 subunit resulted in enhanced dephosphorylation of dS6K following removal of amino acids. In contrast, knockdown of the homologs of the other PP2A regulatory subunits had no effects. Knockdown of the Drosophila homolog of the PP2A/PP4/PP6 interaction protein alpha4/Tap42 did not affect S6K phosphorylation, but did induce apoptosis. These results indicate that PP2A, but not other members of this subfamily, is likely to be a major S6K phosphatase in intact cells and is consistent with an important role for this phosphatase in the TOR pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1991331PMC
http://dx.doi.org/10.1016/j.yexcr.2007.05.008DOI Listing

Publication Analysis

Top Keywords

ds6k phosphorylation
16
pp2a subfamily
8
subfamily protein
8
protein phosphatases
8
drosophila kinase
8
protein kinase
8
amino acid
8
members subfamily
8
phosphorylation knockdown
8
knockdown drosophila
8

Similar Publications

This study was designed to identify novel negative regulators of the Drosophila S6kinase (dS6K). S6K is a downstream effector of the growth-regulatory complex mTORC1 (mechanistic-Target-of-Rapamycin complex 1). Nutrients activate mTORC1, which in turn induces the phosphorylation of S6K to promote cell growth, whereas fasting represses mTORC1 activity.

View Article and Find Full Text PDF

Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment.

View Article and Find Full Text PDF

TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity.

Proc Natl Acad Sci U S A

May 2006

Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.

Target of rapamycin (TOR) plays a central role in cell growth regulation by integrating signals from growth factors, nutrients, and cellular energy levels. TOR forms two distinct physical and functional complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). TORC1, which is sensitive to rapamycin, regulates translation and cell growth, whereas TORC2, which is insensitive to rapamycin, regulates cell morphology and cell growth.

View Article and Find Full Text PDF

Signaling from Akt to FRAP/TOR targets both 4E-BP and S6K in Drosophila melanogaster.

Mol Cell Biol

December 2003

Department of Biochemistry and McGill Cancer Center, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada.

The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways.

View Article and Find Full Text PDF

An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!