Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue.

Mol Cell Proteomics

Department of Cardiology, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.

Published: September 2007

Protein sulfenic acids are reactive intermediates in the catalytic cycles of many enzymes as well as the in formation of other redox states. Sulfenic acid formation is a reversible post-translational modification with potential for protein regulation. Dimedone (5,5-dimethyl-1,3-cyclohexanedione) is commonly used in vitro to study sulfenation of purified proteins, selectively "tagging" them, allowing monitoring by mass spectrometry. However dimedone is of little use in complex protein mixtures because selective monitoring of labeling is not possible. To address this issue, we synthesized a novel biotinylated derivative of dimedone, keeping the dione cassette required for sulfenate reactivity but adding the functionality of a biotin tag. Biotin-amido(5-methyl-5-carboxamidocyclohexane 1,3-dione) tetragol (biotin dimedone) was prepared in six steps, combining 3,5-dimethoxybenzoic acid (Birch reduction, ultimately leading to the dimedone unit with a carboxylate functionality), 1-amino-11-azido-3,6,9-trioxaundecane (a differentially substituted tetragol spacer), and biotin. We loaded biotin dimedone (0.1 mm, 30 min) into rat ventricular myocytes, treated them with H(2)O(2) (0.1-10,000 microm, 5 min), and monitored derivatization on Western blots using streptavidin-horseradish peroxidase. There was a dose-dependent increase in labeling of multiple proteins that was maximal at 0.1 or 1 mm H(2)O(2) and declined sharply below basal with 10 mm treatment. Cell-wide labeling was observed in fixed cells probed with avidin-FITC using a confocal fluorescence microscope. Similar H(2)O(2)-induced labeling was observed in isolated rat hearts. Hearts loaded and subjected to hypoxia showed a striking loss of labeling, which returned when oxygen was resupplied, highlighting the protein sulfenates as oxygen sensors. Cardiac proteins that were sulfenated during oxidative stress were purified with avidin-agarose and identified by separation of tryptic digests by liquid chromatography with on-line analysis by mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M700065-MCP200DOI Listing

Publication Analysis

Top Keywords

novel biotinylated
8
mass spectrometry
8
biotin dimedone
8
labeling observed
8
dimedone
7
protein
5
labeling
5
protein sulfenation
4
sulfenation redox
4
redox sensor
4

Similar Publications

Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation.

View Article and Find Full Text PDF

MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and progression of a wide range of liver diseases. Traditional methods for detecting miR-122 mainly include Northern blotting and qRT-PCR, but they are technically complex and cumbersome, requiring expensive instruments and high technical requirements.

View Article and Find Full Text PDF

Raf Kinase Inhibitor Protein (RKIP) is an important regulator of the MAPK signaling pathway in multicellular eukaryotes. Plasmodium falciparum RKIP (PfRKIP) is a putative phosphatidylethanolamine binding protein (PEBP) that shares limited similarity with Homo sapiens RKIP (HsRKIP). Interestingly, critical components of the MAPK pathway are not expressed in malaria parasites and the physiological function of PfRKIP remains unknown.

View Article and Find Full Text PDF

Cancer is a global health challenge that urgently requires more sensitive and effective cancer detection methods. Fluorescence imaging with small molecule fluorescent probes has shown great promise for cancer detection but most of the developed probes lack active tumor cell targeting, which makes them unable to selectively target tumors, thereby reducing the accuracy of in vivo tumor detection. Herein, we report a novel probe that combines a viscosity-sensitive and cell membrane targetable fluorescent group with biotin for targeted imaging and precise visualization of tumor cells and tumors.

View Article and Find Full Text PDF

Use of Biotin-Labeled Geranyl Pyrophosphate for Analysis of Ykt6 Geranylgeranylation.

Methods Mol Biol

January 2025

Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!