AI Article Synopsis

Article Abstract

A coarse-grained variational model is used to investigate the polymer dynamics of barrier crossing for a diverse set of two-state folding proteins. The model gives reliable folding rate predictions provided excluded volume terms that induce minor structural cooperativity are included in the interaction potential. In general, the cooperative folding routes have sharper interfaces between folded and unfolded regions of the folding nucleus and higher free energy barriers. The calculated free energy barriers are strongly correlated with native topology as characterized by contact order. Increasing the rigidity of the folding nucleus changes the local structure of the transition state ensemble nonuniformly across the set of proteins studied. Nevertheless, the calculated prefactors k(0) are found to be relatively uniform across the protein set, with variation in 1/k(0) less than a factor of 5. This direct calculation justifies the common assumption that the prefactor is roughly the same for all small two-state folding proteins. Using the barrier heights obtained from the model and the best-fit monomer relaxation time 30 ns, we find that 1/k(0) approximately 1-5 mus (with average 1/k(0) approximately 4 micros). This model can be extended to study subtle aspects of folding such as the variation of the folding rate with stability or solvent viscosity and the onset of downhill folding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891811PMC
http://dx.doi.org/10.1073/pnas.0609321104DOI Listing

Publication Analysis

Top Keywords

folding
10
excluded volume
8
structural cooperativity
8
two-state folding
8
folding proteins
8
folding rate
8
folding nucleus
8
free energy
8
energy barriers
8
volume local
4

Similar Publications

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.

View Article and Find Full Text PDF

Deployable electronics with enhanced fatigue resistance for crumpling and tension.

Sci Adv

January 2025

Multiscale Bio-inspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, South Korea.

Highly packable and deployable electronics offer a variety of advantages in electronics and robotics by facilitating spatial efficiency. These electronics must endure extreme folding during packaging and tension to maintain a rigid structure in the deployment state. Here, we present foldable and robustly deployable electronics inspired by Plantago, characterized by their tolerance to folding and tension due to integration of tough veins within thin leaf.

View Article and Find Full Text PDF

Phenotypic age acceleration (PhenoAgeAccel) is a novel clinical aging indicator. This study was carried out to investigate the relationship between PhenoAgeAccel and the incidence of VTE, as well as to integrate PhenoAgeAccel with genetic susceptibility to improve risk stratification of VTE. The study included 394 041 individuals from the UK Biobank.

View Article and Find Full Text PDF

The multifaceted role of XCL1 in health and disease.

Protein Sci

February 2025

Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.

The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!