Neonatal maternal separation (NMS) affects respiratory control development as adult male (but not female) rats previously subjected to NMS show a hypoxic ventilatory response 25% greater than controls. The paraventricular nucleus of the hypothalamus (PVN) is an important modulator of respiratory activity. In the present study, we hypothesized that in awake rats, altered GABAergic inhibition within the PVN contributes to the enhancement of hypoxic ventilatory response observed in rats previously subjected to NMS. During normoxia, the increase in minute ventilation following microinjection of bicuculline (1 mm) within the PVN is greater in NMS versus control rats. These data show that regulation of ventilatory activity related to tonic inhibition of the PVN is more important in NMS than control rats. Microinjection of GABA or muscimol (1 mM) attenuated the ventilatory response to hypoxia (12% O2) in NMS rats only. The higher efficiency of microinjections in NMS rats is supported by results from GABAA receptor autoradiography which revealed a 22% increase in GABAA receptor binding sites within the PVN of NMS rats versus controls. Despite this increase, however, NMS rats still show a larger hypoxic ventilatory response than controls, suggesting that within the PVN the larger number of GABAA receptors either compensate for (1) a deficient GABAergic modulation, (2) an increase in the efficacy of excitatory inputs converging onto this structure, or (3) both. Together, these results show that the life-long consequences of NMS are far reaching as they can compromise the development of vital homeostatic function in a way that may predispose to respiratory disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277229 | PMC |
http://dx.doi.org/10.1113/jphysiol.2007.135160 | DOI Listing |
Crit Care Sci
January 2025
Department of Physical Therapy, Universidade Federal de Uberlândia - Uberlândia (MG), Brazil.
Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.
Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline.
Ann Intensive Care
January 2025
Institute of Anesthesia and Intensive Care, Padova University Hospital, Padua, Italy.
Background: Prone position has been diffusely applied in mechanically ventilated COVID-19 patients. Our aim is ascertaining the association between the physiologic response and the length of the first cycle of prone position and intensive care unit (ICU) mortality.
Methods: International registry including COVID-19 adult patients who underwent prone positioning.
Cureus
December 2024
Neurocritical Care, Caritas Hospital and Institute of Health Sciences, Kottayam, IND.
Here, we present a case of Guillain-Barré syndrome (GBS) that mimicked brain death. A 66-year-old lady with a medical history of breast cancer (now receiving hormone therapy), hypertension, and hypothyroidism, presented to the emergency department. The patient was admitted to the neuro ICU with absent brainstem and spinal cord responses, concerning for possible brain death.
View Article and Find Full Text PDFBackground And Aims: Hematopoietic stem cell transplantation (HSCT) is a key therapeutic approach for pediatric patients with hematologic and non-hematologic disorders. However, post-transplant pulmonary complications remain a significant cause of morbidity and mortality. Pulmonary Function Tests (PFTs) are essential for the early detection of pulmonary dysfunction, yet their application in pediatric HSCT recipients has yielded inconsistent results.
View Article and Find Full Text PDFJ Clin Monit Comput
January 2025
IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy.
Fluids are given with the purpose of increasing cardiac output (CO), but approximately only 50% of critically ill patients are fluid responders. Since the effect of a fluid bolus is time-sensitive, it diminuish within few hours, following the initial fluid resuscitation. Several functional hemodynamic tests (FHTs), consisting of maneuvers affecting heart-lung interactions, have been conceived to discriminate fluid responders from non-responders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!