Mixl1 is a member of the Mix/Bix family of paired-like homeodomain proteins and is required for proper axial mesendoderm morphogenesis and endoderm formation during mouse development. Mix/Bix proteins are transcription factors that function in Nodal-like signaling pathways and are themselves regulated by Nodal. Here, we show that Foxh1 forms a DNA-binding complex with Smads to regulate transforming growth factor beta (TGFbeta)/Nodal-dependent Mixl1 gene expression. Whereas Foxh1 is commonly described as a transcriptional activator, we observed that Foxh1-null embryos exhibit expanded and enhanced Mixl1 expression during gastrulation, indicating that Foxh1 negatively regulates expression of Mixl1 during early mouse embryogenesis. We demonstrate that Foxh1 associates with the homeodomain-containing protein Goosecoid (Gsc), which in turn recruits histone deacetylases to repress Mixl1 gene expression. Ectopic expression of Gsc in embryoid bodies represses endogenous Mixl1 expression and this effect is dependent on Foxh1. As Gsc is itself induced in a Foxh1-dependent manner, we propose that Foxh1 initiates positive and negative transcriptional circuits to refine cell fate decisions during gastrulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914101 | PMC |
http://dx.doi.org/10.1038/sj.emboj.7601753 | DOI Listing |
Hepatology
March 2024
Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Background And Aims: Hepatoblastoma (HB) is the most common liver cancer in children, posing a serious threat to children's health. Chemoresistance is the leading cause of mortality in patients with HB. A more explicit definition of the features of chemotherapy resistance in HB represents a fundamental urgent need.
View Article and Find Full Text PDFEpigenetics
December 2023
Department of Biochemistry and Molecular Biology, Howard University, Washington, Columbia, USA.
African American (AA) men have the highest incidence and mortality rate from Prostate cancer (PCa) than any other racial/ethnic group. To date, PCa genomic studies have largely under-represented tumour samples from AA men. We measured genome-wide DNA methylation in benign and tumor prostate tissues from AA men using the Illumina Infunium 850 K EPIC array.
View Article and Find Full Text PDFCell Tissue Res
July 2023
Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are used to regenerate the myocardium during cardiac repair after myocardial infarction. However, the regulatory mechanism underlying their ability to form mesodermal cells and differentiate into cardiomyocytes remains unclear. Here, we established a human-derived MSCs line isolated from healthy umbilical cords and established a cell model of the natural state to examine the differentiation of hUC-MSCs into cardiomyocytes.
View Article and Find Full Text PDFCell Biochem Funct
March 2023
Division of Bio-health Sciences, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.
Central nervous system anomalies give rise to neuropathological consequences with immense damage to the neuronal tissues. Cell based therapeutics have the potential to manage several neuropathologies whereby the differentiated cells are explored for neuronal regeneration. The current study analyzes the effect of a bioactive compound, alpha terpineol (AT) on the differentiation of rat bone marrow derived mesenchymal stem cells (BM-MSCs) toward neuronal lineage, and explores regulation of differentiation process through the study of Wnt pathway mediators.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2022
School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom.
The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!