The hypoxia-inducible factor (HIF) transcriptional system enables cell adaptation to limited O(2) availability, transducing this signal into patho-physiological responses such as angiogenesis, erythropoiesis, vasomotor control, and altered energy metabolism, as well as cell survival decisions. However, other factors beyond hypoxia are known to activate this pleiotropic transcription factor. The aim of this study was to characterize HIF in human hematopoietic stem cells (HSCs) and evidence is provided that granulocyte colony stimulating factor-mobilized CD34+- and CD133+-HSCs express a stabilized cytoplasmic form of HIF-1alpha under normoxic conditions. It is shown that HIF-1alpha stabilization correlates with down-regulation of the tumour suppressor von Hippel-Lindau protein (pVHL) and is positively controlled by NADPH-oxidase-dependent production of reactive oxygen species, indicating a specific O(2)-independent post-transcriptional control of HIF in mobilized HSCs. This novel finding is discussed in the context of the proposed role of HIF as a mediator of progenitor cell recruitment to injured ischemic tissues and/or in the control of the maintenance of the undifferentiated state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2007.05.077DOI Listing

Publication Analysis

Top Keywords

hypoxia-inducible factor
8
hematopoietic stem
8
stem cells
8
normoxic conditions
8
factor stabilized
4
stabilized circulating
4
circulating hematopoietic
4
cells normoxic
4
conditions hypoxia-inducible
4
hif
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!